Categories
News

Impact of human and artificial intelligence collaboration on workload reduction in medical image interpretation


  • Schünemann, H. J. et al. Breast most cancers screening and analysis: a synopsis of the European Breast Pointers. Ann. Intern. Med. 172, 46–56 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lång, Ok. et al. Artificial intelligence-supported display screen studying versus normal double studying in the Mammography Screening with Artificial Intelligence trial (MASAI): a scientific security evaluation of a randomised, managed, non-inferiority, single-blinded, screening accuracy research. Lancet Oncol. 24, 936–944 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Rajpurkar, P. & Lungren, M. P. The present and future state of AI interpretation of medical photographs. N. Engl. J. Med. 388, 1981–1990 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. A comparability of deep studying efficiency in opposition to health-care professionals in detecting illnesses from medical imaging: a scientific overview and meta-analysis. Lancet Digit Well being 1, e271–e297 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Xue, P. et al. Deep studying in image-based breast and cervical most cancers detection: a scientific overview and meta-analysis. NPJ Digit Med. 5, 19 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. Ethics and governance of artificial intelligence for well being: WHO steerage government abstract. https://www.who.int/publications/i/item/9789240037403 (2021).

  • Shin, H. J., Han, Ok., Ryu, L. & Kim, E. Ok. The affect of artificial intelligence on the studying instances of radiologists for chest radiographs. NPJ Digit Med. 6, 82 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marinovich, M. L. et al. Artificial intelligence (AI) for breast most cancers screening: BreastScreen population-based cohort research of most cancers detection. eBioMedicine. 90, 104498 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leibig, C. et al. Combining the strengths of radiologists and AI for breast most cancers screening: a retrospective evaluation. Lancet Digit Well being 4, e507–e519 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jongsma, Ok. R., Sand, M. & Milota, M. Why we must always not mistake accuracy of medical AI for effectivity. NPJ Digit Med. 7, 57 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenderott, Ok., Gambashidze, N. & Weigl, M. Integration of artificial intelligence into sociotechnical work systems-effects of artificial intelligence options in medical imaging on scientific effectivity: protocol for a scientific literature overview. JMIR Res. Protoc. 11, e40485 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, J. S. et al. Affiliation of artificial intelligence-aided chest radiograph interpretation with reader efficiency and effectivity. JAMA Netw. Open 5, e2229289 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ajmera, P. et al. Validation of a deep studying mannequin for detecting chest pathologies from digital chest radiographs. Diagnostics 13, 557 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andre, F. et al. Human AI teaming for coronary CT angiography evaluation: affect on imaging workflow and diagnostic accuracy. Diagnostics 13, 3574 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao, C. et al. Analysis of an artificial intelligence assist system for breast most cancers screening in Chinese language folks based mostly on mammogram. Most cancers Med. 12, 3718–3726 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Barinov, L. et al. Enhancing the efficacy of ACR TI-RADS via deep learning-based descriptor augmentation. J. Digit Imaging 36, 2392–2401 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Buchlak, Q. D. et al. Results of a complete mind computed tomography deep studying mannequin on radiologist detection accuracy. Eur. Radiol. 34, 810–822 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canoni-Meynet, L. et al. Added worth of an artificial intelligence resolution for fracture detection in the radiologist’s each day trauma emergencies workflow. Diagn. Interv. Imaging 103, 594–600 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Deep learning-based mannequin for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Sci. Rep. 10, 19196 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. et al. Enhancing the analysis of acute ischemic stroke on non-contrast CT utilizing deep studying: a multicenter research. Insights Imaging 13, 184 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conant, E. F. et al. Enhancing accuracy and effectivity with concurrent use of artificial intelligence for digital breast tomosynthesis. Radiol. Artif. Intell. 1, e180096 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dang, L. A. et al. Impact of artificial intelligence in breast most cancers screening with mammography. Breast Most cancers 29, 967–977 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Duron, L. et al. Evaluation of an AI assist in detection of grownup appendicular skeletal fractures by emergency physicians and radiologists: a multicenter cross-sectional diagnostic research. Radiology. 300, 120–129 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Eloy, C. et al. Artificial intelligence–assisted most cancers analysis improves the effectivity of pathologists in prostatic biopsies. Virchows Archiv. 482, 595–604 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, T. et al. Assessing the potential of a deep studying device to enhance fracture detection by radiologists and emergency physicians on extremity radiographs. Acad. Radiol. 31, 1989–1999 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Watanabe, Y. et al. Enchancment of the diagnostic accuracy for intracranial haemorrhage utilizing deep learning-based computer-assisted detection. Neuroradiology. 63, 713–720 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wei, X. et al. Artificial intelligence help improves the accuracy and effectivity of intracranial aneurysm detection with CT angiography. Eur. J. Radiol. 149, 110169 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Winkel, D. J. et al. A novel deep studying based mostly computer-aided analysis system improves the accuracy and effectivity of radiologists in studying biparametric magnetic resonance photographs of the prostate: outcomes of a multireader, multicase research. Make investments. Radiol. 56, 605–613 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yacoub, B. et al. Impact of artificial intelligence help on chest CT interpretation instances: a potential randomized research. Am. J. Roentgenol. 219, 743–751 (2022).

    Article 

    Google Scholar
     

  • Yang, S. Y. et al. Histopathology-based analysis of oral squamous cell carcinoma utilizing deep studying. J. Dent. Res. 101, 1321–1327 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, W. et al. Diagnostic efficiency of deep learning-based vessel extraction and stenosis detection on coronary computed tomography angiography for coronary artery illness: a multi-reader multi-case research. Radiol. Med. 128, 307–315 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yao, B. et al. Artificial intelligence assisted cytological detection for early esophageal squamous epithelial lesions by utilizing low-grade squamous intraepithelial lesion as diagnostic threshold. Most cancers Med. 12, 1228–1236 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, L. et al. Rib fracture detection system based mostly on deep studying. Sci. Rep. 11, 23513 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, S. et al. Growth and validation of a deep-learning mannequin for detecting mind metastases on 3D post-contrast MRI: a multi-center multi-reader analysis research. Neuro Oncol. 24, 1559–1570 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, X. L. et al. Artificial intelligence for diagnosing gastric lesions below white-light endoscopy. Surg. Endosc. 36, 9444–9453 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, B. et al. Enhancing rib fracture detection accuracy and studying effectivity with deep learning-based detection software program: a scientific analysis. Br. J. Radiol. 94, 20200870 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, P. et al. Growth of a deep studying system to detect esophageal most cancers by barium esophagram. Entrance. Oncol. 12, 766243 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Q. Q. et al. Automated detection and classification of rib fractures on thoracic CT utilizing convolutional neural community: accuracy and feasibility. Korean J. Radiol. 21, 869–879 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodríguez-Ruiz, A. et al. Detection of breast most cancers with mammography: impact of an artificial intelligence assist system. Radiology. 290, 305–314 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Music, Y. B. et al. Comparability of detection efficiency of smooth tissue calcifications utilizing artificial intelligence in panoramic radiography. Sci. Rep. 12, 19115 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, Y. et al. Deep studying mannequin improves radiologists’ efficiency in detection and classification of breast lesions. Chin. J. Most cancers Res. 33, 682–693 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, Z. et al. A multicenter research of artificial intelligence-aided software program for detecting seen clinically vital prostate most cancers on mpMRI. Insights Imaging 14, 72 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung, J. et al. Added worth of deep learning-based detection system for a number of main findings on chest radiographs: a randomized crossover research. Radiology. 299, 450–459 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tan, H. et al. The worth of deep learning-based pc aided diagnostic system in enhancing diagnostic efficiency of rib fractures in acute blunt trauma. BMC Med. Imaging 23, 55 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tejani, A. et al. Deep studying for detection of pneumothorax and pleural effusion on chest radiographs: validation in opposition to computed tomography, affect on resident studying time, and interreader concordance. J. Thorac. Imaging 39, 185–193 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Uematsu, T. et al. Comparisons between artificial intelligence computer-aided detection synthesized mammograms and digital mammograms when used alone and in mixture with tomosynthesis photographs in a digital screening setting. Jpn J. Radiol. 41, 63–70 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • van Winkel, S. L. et al. Impact of artificial intelligence assist on accuracy and studying time in breast tomosynthesis image interpretation: a multi-reader multi-case research. Eur. Radiol. 31, 8682–8691 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Ok. et al. Artificial intelligence as diagnostic aiding device in instances of Prostate Imaging Reporting and Information System class 3: the outcomes of retrospective multi-center cohort research. Abdom. Radiol. 48, 3757–3765 (2023).

    Article 

    Google Scholar
     

  • Lin, M. et al. Deep studying system improved detection efficacy of fetal intracranial malformations in a randomized managed trial. NPJ Digit Med. 6, 191 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, F. et al. AI assist for correct and quick radiological analysis of COVID-19: a global multicenter, multivendor CT research. Eur. Radiol. 33, 4280–4291 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Meng, X. H. et al. A completely automated rib fracture detection system on chest CT photographs and its affect on radiologist efficiency. Skeletal Radiol. 50, 1821–1828 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mu, L. et al. Effective-tuned deep convolutional networks for the detection of femoral neck fractures on pelvic radiographs: a multicenter dataset validation. IEEE Entry 9, 78495–78503 (2021).

    Article 

    Google Scholar
     

  • Nam, J. G. et al. Growth and validation of a deep studying algorithm detecting 10 frequent abnormalities on chest radiographs. Eur. Respir. J. 57, 2003061 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noguchi, S. et al. Deep learning-based algorithm improved radiologists’ efficiency in bone metastases detection on CT. Eur. Radiol. 32, 7976–7987 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Pacilè, S. et al. Enhancing breast most cancers detection accuracy of mammography with the concurrent use of an artificial intelligence device. Radiol. Artif. Intell. 2, e190208 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. et al. Artificial intelligence that determines the scientific significance of capsule endoscopy photographs can enhance the effectivity of studying. PLoS ONE 15, e0241474 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pei, Y. et al. A deep-learning pipeline to diagnose pediatric intussusception and assess severity throughout ultrasound scanning: a multicenter retrospective-prospective research. NPJ Digit Med. 6, 182 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, M. C. et al. Impact of artificial intelligence determination assist utilizing deep studying on breast most cancers screening interpretation with single-view wide-angle digital breast tomosynthesis. Radiology. 300, 529–536 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, J. H. et al. Enhancing the efficiency of radiologists utilizing artificial intelligence-based detection assist software program for mammography: a multi-reader research. Korean J. Radiol. 23, 505–516 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan, J. et al. Utilizing much less annotation workload to determine a pathological auxiliary analysis system for gastric most cancers. Cell Rep. Med. 4, 101004 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai, Y. C. et al. Analysis of doctor efficiency utilizing a concurrent-read artificial intelligence system to assist breast ultrasound interpretation. Breast. 65, 124–135 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozuka, T. et al. Effectivity of a computer-aided analysis (CAD) system with deep studying in detection of pulmonary nodules on 1-mm-thick photographs of computed tomography. Jpn J. Radiol. 38, 1052–1061 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, J. H. et al. Medical validation of a deep studying algorithm for detection of pneumonia on chest radiographs in emergency division sufferers with acute febrile respiratory sickness. J. Clin. Med. 9, 1981 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, M. et al. Artificial intelligence system exhibits efficiency on the stage of uropathologists for the detection and grading of prostate most cancers in core needle biopsy: an unbiased exterior validation research. Mod. Pathol. 35, 1449–1457 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hsu, H. H. et al. Efficiency and studying time of lung nodule identification on multidetector CT with or with out an artificial intelligence-powered computer-aided detection system. Clin. Radiol. 76, 626.e623–626.e632 (2021).

    Article 

    Google Scholar
     

  • Hendrix, N. et al. Musculoskeletal radiologist-level efficiency by utilizing deep studying for detection of scaphoid fractures on standard multi-view radiographs of hand and wrist. Eur. Radiol. 33, 1575–1588 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hempel, H. L. et al. Larger settlement between readers with deep studying CAD software program for reporting pulmonary nodules on CT. Eur. J. Radiol. Open 9, 100435 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hallinan, J. et al. A226: improved productiveness utilizing deep studying assisted reporting for MRI lumbar backbone. International Backbone J. 13, 135S (2023).


    Google Scholar
     

  • Guermazi, A. et al. Enhancing radiographic fracture recognition efficiency and effectivity utilizing artificial intelligence. Radiology. 302, 627–636 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, E. Y. et al. Concordance price of radiologists and a commercialized deep-learning resolution for chest X-ray: Actual-world expertise with a multicenter well being screening cohort. PLoS ONE 17, e0264383 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aoki, T. et al. Comparability of scientific utility of deep learning-based programs for small-bowel capsule endoscopy studying. J. Gastroenterol. Hepatol. 39, 157–164 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Bhowmik, A. et al. Automated triage of screening breast MRI examinations in high-risk girls utilizing an ensemble deep studying mannequin. Make investments. Radiol. 58, 710–719 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dembrower, Ok. et al. Impact of artificial intelligence-based triaging of breast most cancers screening mammograms on most cancers detection and radiologist workload: a retrospective simulation research. Lancet Digit Well being 2, e468–e474 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ding, Z. et al. Gastroenterologist-level identification of small-bowel illnesses and regular variants by capsule endoscopy utilizing a deep-learning mannequin. Gastroenterology. 157, 1044–1054.e1045 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Dvijotham, Ok. D. et al. Enhancing the reliability and accuracy of AI-enabled analysis through complementarity-driven deferral to clinicians. Nat. Med. 29, 1814–1820 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frazer, H. M. L., et al. Built-in AI reader improvement and analysis supplies clinically-relevant steerage for human-AI collaboration in inhabitants mammographic screening. Preprint at https://www.medrxiv.org/content/10.1101/2022.11.23.22282646v2 (2022).

  • Xie, X. et al. Growth and validation of an artificial intelligence mannequin for small bowel capsule endoscopy video overview. JAMA Netw. Open 5, e2221992 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, P. et al. Enhancing the accuracy and effectivity of irregular cervical squamous cell detection with cytologist-in-the-loop artificial intelligence. Mod. Pathol. 36, 100186 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yala, A. et al. A deep studying mannequin to triage screening mammograms: a simulation research. Radiology. 293, 38–46 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yoon, S. H. et al. Use of artificial intelligence in triaging of chest radiographs to scale back radiologists’ workload. Eur. Radiol. 34, 1094–1103 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Raya-Povedano, J. L. et al. AI-based methods to scale back workload in breast most cancers screening with mammography and tomosynthesis: a retrospective analysis. Radiology. 300, 57–65 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rodriguez-Ruiz, A. et al. Can we scale back the workload of mammographic screening by automated identification of regular exams with artificial intelligence? A feasibility research. Eur. Radiol. 29, 4825–4832 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shoshan, Y. et al. Artificial intelligence for lowering workload in breast most cancers screening with digital breast tomosynthesis. Radiology. 303, 69–77 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Verburg, E. et al. Deep studying for automated triaging of 4581 breast MRI examinations from the DENSE trial. Radiology. 302, 29–36 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Verburg, E. et al. Validation of mixed deep studying triaging and computer-aided analysis in 2901 breast MRI examinations from the second screening spherical of the dense tissue and early breast neoplasm screening trial. Make investments. Radiol. 58, 293–298 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKinney, S. M. et al. Worldwide analysis of an AI system for breast most cancers screening. Nature. 577, 89–94 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. et al. Identification of energetic pulmonary tuberculosis amongst sufferers with constructive interferon-gamma launch assay outcomes: worth of a deep learning-based computer-aided detection system in completely different eventualities of implementation. J. Thorac. Imaging 38, 145–153 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lauritzen, A. D. et al. An artificial intelligence–based mostly mammography screening protocol for breast most cancers: end result and radiologist workload. Radiology. 304, 41–49 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Larsen, M. et al. Potential methods to be used of artificial intelligence in screen-reading of mammograms, based mostly on retrospective information from 122,969 screening examinations. Eur. Radiol. 32, 8238–8246 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lång, Ok. et al. Figuring out regular mammograms in a big screening inhabitants utilizing artificial intelligence. Eur. Radiol. 31, 1687–1692 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Jing, X. et al. Utilizing deep studying to securely exclude lesions with solely ultrafast breast MRI to shorten acquisition and studying time. Eur. Radiol. 32, 8706–8715 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gehrung, M. et al. Triage-driven analysis of Barrett’s esophagus for early detection of esophageal adenocarcinoma utilizing deep studying. Nat. Med. 27, 833–841 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Voter, A. F., Larson, M. E., Garrett, J. W. & Yu, J. J. Diagnostic accuracy and failure mode evaluation of a deep studying algorithm for the detection of cervical backbone fractures. Am. J. Neuroradiol. 42, 1550–1556 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, W. et al. Exterior validation of an ensemble mannequin for automated mammography interpretation by artificial intelligence. JAMA Netw. Open 5, e2242343 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tschandl, P. et al. Human-computer collaboration for pores and skin most cancers recognition. Nat. Med. 26, 1229–1234 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dratsch, T. et al. Automation bias in mammography: the affect of artificial intelligence BI-RADS solutions on reader efficiency. Radiology. 307, e222176 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Band, S. et al. Software of explainable artificial intelligence in medical well being: a scientific overview of interpretability strategies. Inform. Med. Unlocked 40, 101286 (2023).

    Article 

    Google Scholar
     

  • Bienefeld, N. et al. Fixing the explainable AI conundrum by bridging clinicians’ wants and builders’ objectives. NPJ Digit Med. 6, 94 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, X. et al. Evaluation of efficacy and accuracy of cervical cytology screening with artificial intelligence assistive system. Mod. Pathol. 37, 100486 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Bhayana, R. Chatbots and massive language fashions in radiology: a sensible primer for scientific and analysis functions. Radiology. 310, e232756 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Web page, M. J. et al. The PRISMA 2020 assertion: an up to date guideline for reporting systematic opinions. BMJ. 372, n71 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Julian P. T. Higgins, Tianjing Li & Deeks, J.J. Cochrane Handbook for Systematic Critiques of Interventions. https://training.cochrane.org/handbook/current/chapter-06#section-6-5-2 (2024).

  • L¢pez-L¢pez, J. A., Web page, M. J., Lipsey, M. W. & Higgins, J. P. T. Coping with impact dimension multiplicity in systematicreviews and meta-analyses. Res. Synth. Strategies. 9, 336–351 (2018).

    Article 

    Google Scholar
     

  • Sounderajah, V. et al. A top quality evaluation device for artificial intelligence-centered diagnostic check accuracy research: QUADAS-AI. Nat. Med. 27, 1663–1665 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whiting, P. F. et al. QUADAS-2: a revised device for the standard evaluation of diagnostic accuracy research. Ann. Intern. Med. 155, 529–536 (2011).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *