Perconti, P. & Plebe, A. Deep studying and cognitive science. Cognition 203, 104365. https://doi.org/10.1016/J.COGNITION.2020.104365 (2020).
Turing, A. Clever equipment. B. Jack Copeland 395, 63 (2004).
Shin, H. I. et al. Deep learning-based quantitative analyses of spontaneous actions and their affiliation with early neurological growth in preterm infants. Sci. Rep. 12, 3138 (2022).
Reich, S. et al. Novel ai pushed strategy to categorise toddler motor capabilities. Sci. Rep. 11, 9888 (2021).
Prechtl, H. F. & Hopkins, B. Developmental transformations of spontaneous actions in early infancy. Early Hum. Dev. 14, 233–238. https://doi.org/10.1016/0378-3782(86)90184-2 (1986).
Kelso, J. A. S. On the self-organizing origins of company. Tendencies Cogn. Sci. 20, 490–499. https://doi.org/10.1016/j.tics.2016.04.004 (2016).
Sheets-Johnstone, M. Company: Phenomenological insights and dynamic complementarities. Hum. Psychol. 45, 1 (2017).
Rovee, C. Ok. & Rovee, D. T. Conjugate reinforcement of toddler exploratory conduct. J. Exp. Baby Psychol. 8, 33–39. https://doi.org/10.1016/0022-0965(69)90025-3 (1969).
Rovee-Collier, C. Ok. & Gekoski, M. J. The economics of infancy: A assessment of conjugate reinforcement. Adv. Baby Dev. Behav. 13, 195–255. https://doi.org/10.1016/S0065-2407(08)60348-1 (1979).
Kelso, J. A. S. & Fuchs, A. The coordination dynamics of cell conjugate reinforcement. Biol. Cybern. 110, 41–53. https://doi.org/10.1007/s00422-015-0676-0 (2016).
Piaget, J. The origins of intelligence in youngsters. (1952).
Bahrick, L. & Watson, J. Detection of intermodal proprioceptive-visual contingency as a possible foundation of self-perception in infancy. Dev. Psychol. 5, 96 (1985).
van der Meer, A. L. Conserving the arm in the limelight: Superior visible management of arm actions in neonates. Eur. J. Paediatr. Neurol. 1, 103–108 (1997).
Gibson, E. J. & Adolph, Ok. E. The perceived self in infancy. Psychol. Inq. 3, 119–121. https://doi.org/10.1207/S15327965PLI0302_5 (1992).
Watanabe, H., Homae, F. & Taga, G. Developmental emergence of self-referential and inhibition mechanisms of physique actions underling felicitous behaviors. J. Exp. Psychol. Hum. Percept. Carry out. 37, 1157–1173. https://doi.org/10.1037/A0021936 (2011).
Aslin, R. Toddler studying: Historic, conceptual, and methodological challenges. Wiley On-line Library 19, 2–27. https://doi.org/10.1111/infa.12036 (2014).
Zaadnoordijk, L., Otworowska, M., Kwisthout, J. & Hunnius, S. Can infants’ sense of company be discovered in their conduct? insights from babybot simulations of the mobile-paradigm. Cognition 181, 58–64 (2018).
Kelso, J. A. S. Multistability and metastability: Understanding dynamic coordination in the mind. Philos. Trans. R. Soc. B Biol. Sci. 367, 906–918. https://doi.org/10.1098/rstb.2011.0351 (2012).
Fujihira, R. & Taga, G. Dynamical techniques mannequin of growth of the motion differentiation in early infancy: A requisite of bodily company. Biol. Cybern. 5, 1–13. https://doi.org/10.1007/s00422-023-00955 (2023).
Sloan, A. T., Jones, N. A. & Kelso, J. A. S. Which means from motion and stillness: Signatures of coordination dynamics reveal toddler company. Proc. Natl. Acad. Sci. 120, e2306732120 (2023).
Thelen, E. & Fisher, D. M. From spontaneous to instrumental conduct: Kinematic evaluation of motion adjustments throughout very early studying. Baby Dev. 54, 129. https://doi.org/10.2307/1129869 (1983).
Sargent, B., Schweighofer, N., Kubo, M. & Fetters, L. Toddler exploratory studying: Affect on leg joint coordination. PLoS ONE 9, e91500. https://doi.org/10.1371/JOURNAL.PONE.0091500 (2014).
Thelen, E., Kelso, J. A. S. & Fogel, A. Self-organizing techniques and toddler motor growth. Dev. Rev. 7, 39–65 (1987).
McCay, Ok. D., Ho, E. S. L., Marcroft, C. & Embleton, N. D. Establishing pose based mostly options utilizing histograms for the detection of irregular toddler actions. Science 2, 5469–5472. https://doi.org/10.1109/EMBC.2019.8857680 (2019).
Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E. & Sheikh, Y. Openpose: Realtime multi-person 2nd pose estimation utilizing half affinity fields. IEEE Trans. Sample Anal. Mach. Intell. 43, 172–186. https://doi.org/10.1109/TPAMI.2019.2929257 (2021).
Hesse, N. et al. Laptop imaginative and prescient for medical toddler movement evaluation: State of the artwork and rgb-d information set. Lecture Notes in Laptop Science 11134 LNCS, 32–49, (2019). https://doi.org/10.1007/978-3-030-11024-6_3
Tsuji, T. et al. Markerless measurement and analysis of common actions in infants. Sci. Rep. 10, 1422. https://doi.org/10.1038/s41598-020-57580-z (2020).
Zhou, Y., Solar, X., Zha, Z.-J. & Zeng, W. Mict: Blended 3d/2nd convolutional tube for human motion recognition. 449–458, (IEEE, 2018). https://doi.org/10.1109/CVPR.2018.00054
Liu, J., Rahmani, H., Akhtar, N. & Mian, A. Studying human pose fashions from synthesized information for strong rgb-d motion recognition. Int. J. Comput. Imaginative and prescient 127, 1545–1564. https://doi.org/10.1007/s11263-019-01192-2 (2019).
Luvizon, D. C., Picard, D. & Tabia, H. 2nd/3d pose estimation and motion recognition utilizing multitask deep studying. 5137–5146, https://doi.org/10.1109/CVPR.2018.00539 (IEEE, 2018).
Sabour, S., Frosst, N. & Hinton, G. E. Dynamic routing between capsules. vol. 2017-Decem, 3857–3867, https://doi.org/10.48550/arxiv.1710.09829 (2017).
Hinton, G. E., Sabour, S. & Frosst, N. Matrix capsules with em routing. In Worldwide Convention on Studying Representations (2018).
Khodadadzadeh, M., Ding, X., Chaurasia, P. & Coyle, D. A hybrid capsule community for hyperspectral picture classification. IEEE J. Sel. Prime. Appl. Earth Observ. Distant Sens. 14, 11824–11839. https://doi.org/10.1109/JSTARS.2021.3126427 (2021).
Aggarwal, J. & Xia, L. Human exercise recognition from 3d information: A assessment. Sample Recogn. Lett. 48, 70–80. https://doi.org/10.1016/j.patrec.2014.04.011 (2014).
Talha, S. A. W., Hammouche, M., Ghorbel, E., Fleury, A. & Ambellouis, S. Options and classification schemes for view-invariant and real-time human motion recognition. IEEE Trans. Cogn. Dev. Syst. 10, 894–902. https://doi.org/10.1109/TCDS.2018.2844279 (2018).
Yan, S., Smith, J. S., Lu, W. & Zhang, B. Multibranch consideration networks for motion recognition in nonetheless photos. IEEE Trans. Cogn. Dev. Syst. 10, 1116–1125. https://doi.org/10.1109/TCDS.2017.2783944 (2017).
Ullah, A., Ahmad, J., Muhammad, Ok., Sajjad, M. & Baik, S. W. Motion recognition in video sequences utilizing deep bi-directional lstm with cnn options. IEEE Entry 6, 1155–1166. https://doi.org/10.1109/ACCESS.2017.2778011 (2018).
Nguyen-Thai, B. et al. A spatio-temporal attention-based mannequin for toddler motion evaluation from movies. IEEE J. Biomed. Well being Inform. 25, 3911–3920. https://doi.org/10.1109/JBHI.2021.3077957 (2021).
Larsen, M. L. et al. The impact of gestational age on main neurodevelopmental problems in preterm infants. Pediatric Res.https://doi.org/10.1038/s41390-021-01710-4 (2021).
Leo, M., Bernava, G. M., Carcagnì, P. & Distante, C. Video-based computerized child movement evaluation for early neurological dysfunction analysis: State of the artwork and future instructions. Sensors 22, 866. https://doi.org/10.3390/s22030866 (2022).
Adde, L. et al. Early prediction of cerebral palsy by computer-based video evaluation of common actions: A feasibility examine cpp cerebral palsy predictor gma common motion evaluation. Wiley On-line Library 52, 773–778. https://doi.org/10.1111/j.1469-8749.2010.03629.x (2010).
Orlandi, S. et al. Detection of atypical and typical toddler actions utilizing computer-based video evaluation. In 2018 fortieth annual worldwide convention of the IEEE engineering in medication and biology society (EMBC) 2018-July, 3598–3601, https://doi.org/10.1109/EMBC.2018.8513078 (2018).
Stahl, A. et al. An optical flow-based technique to foretell childish cerebral palsy. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 605–614. https://doi.org/10.1109/TNSRE.2012.2195030 (2012).
Presti, L. L. & Cascia, M. L. 3d skeleton-based human motion classification: A survey. Sample Recogn. 53, 130–147. https://doi.org/10.1016/J.PATCOG.2015.11.019 (2016).
Irshad, M. T., Nisar, M. A., Gouverneur, P., Rapp, M. & Grzegorzek, M. Ai approaches in the direction of prechtl’s evaluation of common actions: A scientific literature assessment. Sensors 20, 5321. https://doi.org/10.3390/s20185321 (2020).
Wilson, R. B., Vangala, S., Elashoff, D., Safari, T. & Smith, B. A. Utilizing wearable sensor know-how to measure movement complexity in infants at excessive familial danger for autism spectrum dysfunction. Sensors 21, 616. https://doi.org/10.3390/s21020616 (2021).
Yu, J. et al. Adaptive spatiotemporal illustration studying for skeleton-based human motion recognition. IEEE Trans. Cog. Dev. Syst. 2, 1–1. https://doi.org/10.1109/TCDS.2021.3131253 (2021).
Sloan, A. T. Growth of Toddler Company. Phd thesis, Florida Atlantic College (2022). Out there at https://www.proquest.com/pagepdf/2668946050accountid=10902.
Liu, J., Shahroudy, A., Xu, D., Kot, A. C. & Wang, G. Skeleton-based motion recognition utilizing spatio-temporal lstm community with belief gates. IEEE Trans. Sample Anal. Mach. Intell. 40, 3007–3021. https://doi.org/10.1109/TPAMI.2017.2771306 (2018).
Li, S., Liu, W. & Ma, H. Attentive spatial-temporal abstract networks for characteristic studying in irregular gait recognition. IEEE Trans. Multimedia 21, 2361–2375. https://doi.org/10.1109/TMM.2019.2900134 (2019).
Fuchs, A. & Kelso, J. A. S. Coordination dynamics and synergetics: From finger actions to mind patterns and ballet dancing. Complicated. Synerg. 2, 301–316 (2017).
Müller, S. C., Plath, P. J., Radons, G. & Fuchs, A. Complexity and synergetics. Complicated. Syner. 1–421, https://doi.org/10.1007/978-3-319-64334-2 (2017).
Discovery of latent 3d keypoints by way of end-to-end geometric reasoning. In Advances in Neural Info Processing Techniques 2018-December, 2059–2070, https://doi.org/10.48550/arxiv.1807.03146 (2018).
Güler, R. A., Neverova, N. & Kokkinos, I. Densepose: Dense human pose estimation in the wild. In Proceedings of the IEEE Laptop Society Convention on Laptop Imaginative and prescient and Sample Recognition 7297–7306, https://doi.org/10.48550/arxiv.1802.00434 (2018).
McCay, Ok. D. et al. Irregular toddler actions classification with deep studying on pose-based options. IEEE Entry 8, 51582–51592. https://doi.org/10.1109/ACCESS.2020.2980269 (2020).
Lempereur, M. et al. A brand new deep learning-based technique for the detection of gait occasions in youngsters with gait problems: Proof-of-concept and concurrent validity. J. Biomech. 98, 109490. https://doi.org/10.1016/J.JBIOMECH.2019.109490 (2020).
Cunningham, R., Sánchez, M. B., Butler, P. B., Southgate, M. J. & Loram, I. D. Absolutely automated image-based estimation of postural point-features in youngsters with cerebral palsy utilizing deep studying. R. Soc. Open Sci. 6, 639. https://doi.org/10.1098/RSOS.191011 (2019).
Rueangsirarak, W., Zhang, J., Aslam, N., Ho, E. S. & Shum, H. P. Automated musculoskeletal and neurological dysfunction analysis with relative joint displacement from human gait. IEEE Trans. Neural Syst. Rehabili. Eng. 26, 2387–2396. https://doi.org/10.1109/TNSRE.2018.2880871 (2018).
Einspieler, C. & Prechtl, H. F. Prechtl’s evaluation of common actions: A diagnostic device for the functional evaluation of the younger nervous system. Ment. Retard. Dev. Disabil. Res. Rev. 11, 61–67 (2005).
Campbell, S. Ok. Functional motion evaluation with the check of toddler motor efficiency. J. Perinatol. 41, 2385–2394 (2021).
Chambers, C. et al. Laptop imaginative and prescient to mechanically assess toddler neuromotor danger. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 2431–2442 (2020).
Moccia, S., Migliorelli, L., Carnielli, V. & Frontoni, E. Preterm infants’ pose estimation with spatio-temporal options. IEEE Trans. Biomed. Eng. 67, 2370–2380 (2019).
Wu, Q., Xu, G., Zhang, S., Li, Y. & Wei, F. Human 3d pose estimation in a mendacity place by rgb-d photos for medical analysis and rehabilitation. In 2020 forty second Annual Worldwide Convention of the IEEE Engineering in Medication & Biology Society (EMBC) 5802–5805 (IEEE, 2020).
Groos, D., Adde, L., Støen, R., Ramampiaro, H. & Ihlen, E. A. In the direction of human-level efficiency on computerized pose estimation of toddler spontaneous actions. Comput. Med. Imaging Gr. 95, 102012 (2022).
Marchi, V. et al. Automated pose estimation captures key elements of common actions at eight to 17 weeks from standard movies. Acta Paediatr. 108, 1817–1824 (2019).
McCay, Ok. D. et al. Irregular toddler actions classification with deep studying on pose-based options. IEEE Entry 8, 51582–51592 (2020).
Wu, Q. et al. A training-free toddler spontaneous motion evaluation technique for cerebral palsy prediction based mostly on movies. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 1670–1679 (2023).
Sakkos, D. et al. Identification of irregular actions in infants: A deep neural community for physique part-based prediction of cerebral palsy. IEEE Entry 9, 94281–94292 (2021).
Doi, H. et al. Prediction of autistic tendencies at 18 months of age by way of markerless video evaluation of spontaneous physique actions in 4-month-old infants. Sci. Rep. 12, 18045 (2022).
Leo, M., Bernava, G. M., Carcagnì, P. & Distante, C. Video-based computerized child movement evaluation for early neurological dysfunction analysis: State of the artwork and future instructions. Sensors 22, 866 (2022).
Migliorelli, L., Moccia, S., Pietrini, R., Carnielli, V. P. & Frontoni, E. The babypose dataset. Information in transient 33, 106329 (2020).
Hesse, N. et al. Laptop imaginative and prescient for medical toddler movement evaluation: State of the artwork and rgb-d information set. In Proceedings of the European Convention on Laptop Imaginative and prescient (ECCV) Workshops (2018).
Taylor, H. B. et al. Motor contingency studying and infants with spina bifida. J. Int. Neuropsychol. Soc. 19, 206–215 (2013).
Kim, J. A. et al. Infants born preterm and infants born full-term generate extra selective leg joint motion throughout the scaffolded cell process. Infancy 26, 756–769 (2021).
Emeli, V. & Howard, A. In the direction of sensible deployment of a robotic cell system for early detection of cerebral palsy in infants. In 2021 IEEE Worldwide Convention on Superior Robotics and Its Social Impacts (ARSO) 1–6 (IEEE, 2021).
Sargent, B., Kubo, M. & Fetters, L. Toddler discovery studying and decrease extremity coordination: Affect of prematurity. Phys. Occup. Ther. Ped. 38, 210–225 (2018).
Chen, C.-Y., Harrison, T. & Heathcock, J. Infants with advanced congenital coronary heart illnesses present poor short-term reminiscence in the cell paradigm at 3 months of age. Toddler Behav. Dev. 40, 12–19 (2015).
Heathcock, J. C., Bhat, A. N., Lobo, M. A. & Galloway, J. The efficiency of infants born preterm and full-term in the cell paradigm: Studying and reminiscence. Phys. Ther. 84, 808–821 (2004).
Sargent, B. et al. In-home kicking-activated cell process to inspire selective motor management of infants at excessive danger of cerebral palsy: A feasibility examine. Phys. Ther. 100, 2217–2226 (2020).
Duff, S. et al. Utilizing contingent reinforcement to enhance muscle activation after perinatal brachial plexus damage: A pilot examine. Phys. Occup. Ther. Ped. 37, 555–565 (2017).
Sloan, A. et al. Coordination dynamics meets energetic inference and synthetic intelligence (cd + ai2): A multi-pronged strategy to understanding the dynamics of mind and the emergence of aware company (2023). Society for Neuroscience; Convention date: 10-12-2023 Via 15-12-2023.