Categories
News

Artificial intelligence detects awareness of functional relation with the environment in 3 month old babies


  • Perconti, P. & Plebe, A. Deep studying and cognitive science. Cognition 203, 104365. https://doi.org/10.1016/J.COGNITION.2020.104365 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Turing, A. Clever equipment. B. Jack Copeland 395, 63 (2004).


    Google Scholar
     

  • Shin, H. I. et al. Deep learning-based quantitative analyses of spontaneous actions and their affiliation with early neurological growth in preterm infants. Sci. Rep. 12, 3138 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reich, S. et al. Novel ai pushed strategy to categorise toddler motor capabilities. Sci. Rep. 11, 9888 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prechtl, H. F. & Hopkins, B. Developmental transformations of spontaneous actions in early infancy. Early Hum. Dev. 14, 233–238. https://doi.org/10.1016/0378-3782(86)90184-2 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelso, J. A. S. On the self-organizing origins of company. Tendencies Cogn. Sci. 20, 490–499. https://doi.org/10.1016/j.tics.2016.04.004 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheets-Johnstone, M. Company: Phenomenological insights and dynamic complementarities. Hum. Psychol. 45, 1 (2017).


    Google Scholar
     

  • Rovee, C. Ok. & Rovee, D. T. Conjugate reinforcement of toddler exploratory conduct. J. Exp. Baby Psychol. 8, 33–39. https://doi.org/10.1016/0022-0965(69)90025-3 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rovee-Collier, C. Ok. & Gekoski, M. J. The economics of infancy: A assessment of conjugate reinforcement. Adv. Baby Dev. Behav. 13, 195–255. https://doi.org/10.1016/S0065-2407(08)60348-1 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelso, J. A. S. & Fuchs, A. The coordination dynamics of cell conjugate reinforcement. Biol. Cybern. 110, 41–53. https://doi.org/10.1007/s00422-015-0676-0 (2016).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Piaget, J. The origins of intelligence in youngsters. (1952).

  • Bahrick, L. & Watson, J. Detection of intermodal proprioceptive-visual contingency as a possible foundation of self-perception in infancy. Dev. Psychol. 5, 96 (1985).


    Google Scholar
     

  • van der Meer, A. L. Conserving the arm in the limelight: Superior visible management of arm actions in neonates. Eur. J. Paediatr. Neurol. 1, 103–108 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Gibson, E. J. & Adolph, Ok. E. The perceived self in infancy. Psychol. Inq. 3, 119–121. https://doi.org/10.1207/S15327965PLI0302_5 (1992).

    Article 

    Google Scholar
     

  • Watanabe, H., Homae, F. & Taga, G. Developmental emergence of self-referential and inhibition mechanisms of physique actions underling felicitous behaviors. J. Exp. Psychol. Hum. Percept. Carry out. 37, 1157–1173. https://doi.org/10.1037/A0021936 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Aslin, R. Toddler studying: Historic, conceptual, and methodological challenges. Wiley On-line Library 19, 2–27. https://doi.org/10.1111/infa.12036 (2014).

    Article 

    Google Scholar
     

  • Zaadnoordijk, L., Otworowska, M., Kwisthout, J. & Hunnius, S. Can infants’ sense of company be discovered in their conduct? insights from babybot simulations of the mobile-paradigm. Cognition 181, 58–64 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kelso, J. A. S. Multistability and metastability: Understanding dynamic coordination in the mind. Philos. Trans. R. Soc. B Biol. Sci. 367, 906–918. https://doi.org/10.1098/rstb.2011.0351 (2012).

    Article 

    Google Scholar
     

  • Fujihira, R. & Taga, G. Dynamical techniques mannequin of growth of the motion differentiation in early infancy: A requisite of bodily company. Biol. Cybern. 5, 1–13. https://doi.org/10.1007/s00422-023-00955 (2023).

    Article 

    Google Scholar
     

  • Sloan, A. T., Jones, N. A. & Kelso, J. A. S. Which means from motion and stillness: Signatures of coordination dynamics reveal toddler company. Proc. Natl. Acad. Sci. 120, e2306732120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thelen, E. & Fisher, D. M. From spontaneous to instrumental conduct: Kinematic evaluation of motion adjustments throughout very early studying. Baby Dev. 54, 129. https://doi.org/10.2307/1129869 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sargent, B., Schweighofer, N., Kubo, M. & Fetters, L. Toddler exploratory studying: Affect on leg joint coordination. PLoS ONE 9, e91500. https://doi.org/10.1371/JOURNAL.PONE.0091500 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thelen, E., Kelso, J. A. S. & Fogel, A. Self-organizing techniques and toddler motor growth. Dev. Rev. 7, 39–65 (1987).

    Article 

    Google Scholar
     

  • McCay, Ok. D., Ho, E. S. L., Marcroft, C. & Embleton, N. D. Establishing pose based mostly options utilizing histograms for the detection of irregular toddler actions. Science 2, 5469–5472. https://doi.org/10.1109/EMBC.2019.8857680 (2019).

    Article 

    Google Scholar
     

  • Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E. & Sheikh, Y. Openpose: Realtime multi-person 2nd pose estimation utilizing half affinity fields. IEEE Trans. Sample Anal. Mach. Intell. 43, 172–186. https://doi.org/10.1109/TPAMI.2019.2929257 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hesse, N. et al. Laptop imaginative and prescient for medical toddler movement evaluation: State of the artwork and rgb-d information set. Lecture Notes in Laptop Science 11134 LNCS, 32–49, (2019). https://doi.org/10.1007/978-3-030-11024-6_3

  • Tsuji, T. et al. Markerless measurement and analysis of common actions in infants. Sci. Rep. 10, 1422. https://doi.org/10.1038/s41598-020-57580-z (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y., Solar, X., Zha, Z.-J. & Zeng, W. Mict: Blended 3d/2nd convolutional tube for human motion recognition. 449–458, (IEEE, 2018). https://doi.org/10.1109/CVPR.2018.00054

  • Liu, J., Rahmani, H., Akhtar, N. & Mian, A. Studying human pose fashions from synthesized information for strong rgb-d motion recognition. Int. J. Comput. Imaginative and prescient 127, 1545–1564. https://doi.org/10.1007/s11263-019-01192-2 (2019).

    Article 

    Google Scholar
     

  • Luvizon, D. C., Picard, D. & Tabia, H. 2nd/3d pose estimation and motion recognition utilizing multitask deep studying. 5137–5146, https://doi.org/10.1109/CVPR.2018.00539 (IEEE, 2018).

  • Sabour, S., Frosst, N. & Hinton, G. E. Dynamic routing between capsules. vol. 2017-Decem, 3857–3867, https://doi.org/10.48550/arxiv.1710.09829 (2017).

  • Hinton, G. E., Sabour, S. & Frosst, N. Matrix capsules with em routing. In Worldwide Convention on Studying Representations (2018).

  • Khodadadzadeh, M., Ding, X., Chaurasia, P. & Coyle, D. A hybrid capsule community for hyperspectral picture classification. IEEE J. Sel. Prime. Appl. Earth Observ. Distant Sens. 14, 11824–11839. https://doi.org/10.1109/JSTARS.2021.3126427 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Aggarwal, J. & Xia, L. Human exercise recognition from 3d information: A assessment. Sample Recogn. Lett. 48, 70–80. https://doi.org/10.1016/j.patrec.2014.04.011 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Talha, S. A. W., Hammouche, M., Ghorbel, E., Fleury, A. & Ambellouis, S. Options and classification schemes for view-invariant and real-time human motion recognition. IEEE Trans. Cogn. Dev. Syst. 10, 894–902. https://doi.org/10.1109/TCDS.2018.2844279 (2018).

    Article 

    Google Scholar
     

  • Yan, S., Smith, J. S., Lu, W. & Zhang, B. Multibranch consideration networks for motion recognition in nonetheless photos. IEEE Trans. Cogn. Dev. Syst. 10, 1116–1125. https://doi.org/10.1109/TCDS.2017.2783944 (2017).

    Article 

    Google Scholar
     

  • Ullah, A., Ahmad, J., Muhammad, Ok., Sajjad, M. & Baik, S. W. Motion recognition in video sequences utilizing deep bi-directional lstm with cnn options. IEEE Entry 6, 1155–1166. https://doi.org/10.1109/ACCESS.2017.2778011 (2018).

    Article 

    Google Scholar
     

  • Nguyen-Thai, B. et al. A spatio-temporal attention-based mannequin for toddler motion evaluation from movies. IEEE J. Biomed. Well being Inform. 25, 3911–3920. https://doi.org/10.1109/JBHI.2021.3077957 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Larsen, M. L. et al. The impact of gestational age on main neurodevelopmental problems in preterm infants. Pediatric Res.https://doi.org/10.1038/s41390-021-01710-4 (2021).

  • Leo, M., Bernava, G. M., Carcagnì, P. & Distante, C. Video-based computerized child movement evaluation for early neurological dysfunction analysis: State of the artwork and future instructions. Sensors 22, 866. https://doi.org/10.3390/s22030866 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adde, L. et al. Early prediction of cerebral palsy by computer-based video evaluation of common actions: A feasibility examine cpp cerebral palsy predictor gma common motion evaluation. Wiley On-line Library 52, 773–778. https://doi.org/10.1111/j.1469-8749.2010.03629.x (2010).

    Article 

    Google Scholar
     

  • Orlandi, S. et al. Detection of atypical and typical toddler actions utilizing computer-based video evaluation. In 2018 fortieth annual worldwide convention of the IEEE engineering in medication and biology society (EMBC) 2018-July, 3598–3601, https://doi.org/10.1109/EMBC.2018.8513078 (2018).

  • Stahl, A. et al. An optical flow-based technique to foretell childish cerebral palsy. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 605–614. https://doi.org/10.1109/TNSRE.2012.2195030 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Presti, L. L. & Cascia, M. L. 3d skeleton-based human motion classification: A survey. Sample Recogn. 53, 130–147. https://doi.org/10.1016/J.PATCOG.2015.11.019 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Irshad, M. T., Nisar, M. A., Gouverneur, P., Rapp, M. & Grzegorzek, M. Ai approaches in the direction of prechtl’s evaluation of common actions: A scientific literature assessment. Sensors 20, 5321. https://doi.org/10.3390/s20185321 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, R. B., Vangala, S., Elashoff, D., Safari, T. & Smith, B. A. Utilizing wearable sensor know-how to measure movement complexity in infants at excessive familial danger for autism spectrum dysfunction. Sensors 21, 616. https://doi.org/10.3390/s21020616 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. et al. Adaptive spatiotemporal illustration studying for skeleton-based human motion recognition. IEEE Trans. Cog. Dev. Syst. 2, 1–1. https://doi.org/10.1109/TCDS.2021.3131253 (2021).

    Article 

    Google Scholar
     

  • Sloan, A. T. Growth of Toddler Company. Phd thesis, Florida Atlantic College (2022). Out there at https://www.proquest.com/pagepdf/2668946050accountid=10902.

  • Liu, J., Shahroudy, A., Xu, D., Kot, A. C. & Wang, G. Skeleton-based motion recognition utilizing spatio-temporal lstm community with belief gates. IEEE Trans. Sample Anal. Mach. Intell. 40, 3007–3021. https://doi.org/10.1109/TPAMI.2017.2771306 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Li, S., Liu, W. & Ma, H. Attentive spatial-temporal abstract networks for characteristic studying in irregular gait recognition. IEEE Trans. Multimedia 21, 2361–2375. https://doi.org/10.1109/TMM.2019.2900134 (2019).

    Article 

    Google Scholar
     

  • Fuchs, A. & Kelso, J. A. S. Coordination dynamics and synergetics: From finger actions to mind patterns and ballet dancing. Complicated. Synerg. 2, 301–316 (2017).


    Google Scholar
     

  • Müller, S. C., Plath, P. J., Radons, G. & Fuchs, A. Complexity and synergetics. Complicated. Syner. 1–421, https://doi.org/10.1007/978-3-319-64334-2 (2017).

  • Discovery of latent 3d keypoints by way of end-to-end geometric reasoning. In Advances in Neural Info Processing Techniques 2018-December, 2059–2070, https://doi.org/10.48550/arxiv.1807.03146 (2018).

  • Güler, R. A., Neverova, N. & Kokkinos, I. Densepose: Dense human pose estimation in the wild. In Proceedings of the IEEE Laptop Society Convention on Laptop Imaginative and prescient and Sample Recognition 7297–7306, https://doi.org/10.48550/arxiv.1802.00434 (2018).

  • McCay, Ok. D. et al. Irregular toddler actions classification with deep studying on pose-based options. IEEE Entry 8, 51582–51592. https://doi.org/10.1109/ACCESS.2020.2980269 (2020).

    Article 

    Google Scholar
     

  • Lempereur, M. et al. A brand new deep learning-based technique for the detection of gait occasions in youngsters with gait problems: Proof-of-concept and concurrent validity. J. Biomech. 98, 109490. https://doi.org/10.1016/J.JBIOMECH.2019.109490 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cunningham, R., Sánchez, M. B., Butler, P. B., Southgate, M. J. & Loram, I. D. Absolutely automated image-based estimation of postural point-features in youngsters with cerebral palsy utilizing deep studying. R. Soc. Open Sci. 6, 639. https://doi.org/10.1098/RSOS.191011 (2019).

    Article 
    (*3*) 

  • Rueangsirarak, W., Zhang, J., Aslam, N., Ho, E. S. & Shum, H. P. Automated musculoskeletal and neurological dysfunction analysis with relative joint displacement from human gait. IEEE Trans. Neural Syst. Rehabili. Eng. 26, 2387–2396. https://doi.org/10.1109/TNSRE.2018.2880871 (2018).

    Article 

    Google Scholar
     

  • Einspieler, C. & Prechtl, H. F. Prechtl’s evaluation of common actions: A diagnostic device for the functional evaluation of the younger nervous system. Ment. Retard. Dev. Disabil. Res. Rev. 11, 61–67 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Campbell, S. Ok. Functional motion evaluation with the check of toddler motor efficiency. J. Perinatol. 41, 2385–2394 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chambers, C. et al. Laptop imaginative and prescient to mechanically assess toddler neuromotor danger. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 2431–2442 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moccia, S., Migliorelli, L., Carnielli, V. & Frontoni, E. Preterm infants’ pose estimation with spatio-temporal options. IEEE Trans. Biomed. Eng. 67, 2370–2380 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Q., Xu, G., Zhang, S., Li, Y. & Wei, F. Human 3d pose estimation in a mendacity place by rgb-d photos for medical analysis and rehabilitation. In 2020 forty second Annual Worldwide Convention of the IEEE Engineering in Medication & Biology Society (EMBC) 5802–5805 (IEEE, 2020).

  • Groos, D., Adde, L., Støen, R., Ramampiaro, H. & Ihlen, E. A. In the direction of human-level efficiency on computerized pose estimation of toddler spontaneous actions. Comput. Med. Imaging Gr. 95, 102012 (2022).

    Article 

    Google Scholar
     

  • Marchi, V. et al. Automated pose estimation captures key elements of common actions at eight to 17 weeks from standard movies. Acta Paediatr. 108, 1817–1824 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • McCay, Ok. D. et al. Irregular toddler actions classification with deep studying on pose-based options. IEEE Entry 8, 51582–51592 (2020).

    Article 

    Google Scholar
     

  • Wu, Q. et al. A training-free toddler spontaneous motion evaluation technique for cerebral palsy prediction based mostly on movies. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 1670–1679 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sakkos, D. et al. Identification of irregular actions in infants: A deep neural community for physique part-based prediction of cerebral palsy. IEEE Entry 9, 94281–94292 (2021).

    Article 

    Google Scholar
     

  • Doi, H. et al. Prediction of autistic tendencies at 18 months of age by way of markerless video evaluation of spontaneous physique actions in 4-month-old infants. Sci. Rep. 12, 18045 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leo, M., Bernava, G. M., Carcagnì, P. & Distante, C. Video-based computerized child movement evaluation for early neurological dysfunction analysis: State of the artwork and future instructions. Sensors 22, 866 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Migliorelli, L., Moccia, S., Pietrini, R., Carnielli, V. P. & Frontoni, E. The babypose dataset. Information in transient 33, 106329 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hesse, N. et al. Laptop imaginative and prescient for medical toddler movement evaluation: State of the artwork and rgb-d information set. In Proceedings of the European Convention on Laptop Imaginative and prescient (ECCV) Workshops (2018).

  • Taylor, H. B. et al. Motor contingency studying and infants with spina bifida. J. Int. Neuropsychol. Soc. 19, 206–215 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. A. et al. Infants born preterm and infants born full-term generate extra selective leg joint motion throughout the scaffolded cell process. Infancy 26, 756–769 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emeli, V. & Howard, A. In the direction of sensible deployment of a robotic cell system for early detection of cerebral palsy in infants. In 2021 IEEE Worldwide Convention on Superior Robotics and Its Social Impacts (ARSO) 1–6 (IEEE, 2021).

  • Sargent, B., Kubo, M. & Fetters, L. Toddler discovery studying and decrease extremity coordination: Affect of prematurity. Phys. Occup. Ther. Ped. 38, 210–225 (2018).

    Article 

    Google Scholar
     

  • Chen, C.-Y., Harrison, T. & Heathcock, J. Infants with advanced congenital coronary heart illnesses present poor short-term reminiscence in the cell paradigm at 3 months of age. Toddler Behav. Dev. 40, 12–19 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Heathcock, J. C., Bhat, A. N., Lobo, M. A. & Galloway, J. The efficiency of infants born preterm and full-term in the cell paradigm: Studying and reminiscence. Phys. Ther. 84, 808–821 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Sargent, B. et al. In-home kicking-activated cell process to inspire selective motor management of infants at excessive danger of cerebral palsy: A feasibility examine. Phys. Ther. 100, 2217–2226 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duff, S. et al. Utilizing contingent reinforcement to enhance muscle activation after perinatal brachial plexus damage: A pilot examine. Phys. Occup. Ther. Ped. 37, 555–565 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sloan, A. et al. Coordination dynamics meets energetic inference and synthetic intelligence (cd + ai2): A multi-pronged strategy to understanding the dynamics of mind and the emergence of aware company (2023). Society for Neuroscience; Convention date: 10-12-2023 Via 15-12-2023.



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *