Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG pointers on prostate cancer-2020 replace. Half 1: screening, analysis, and native therapy with healing intent. Eur Urol. 2021;79(2):243–62.
Lorusso V, Kabre B, Pignot G, Branger N, Pacchetti A, Thomassin-Piana J, et al. Exterior validation of the computerized evaluation of TRUS of the prostate with the ANNA/C-TRUS system: a potential position of artificial intelligence for bettering prostate cancer detection. World J Urol. 2023;41(3):619–25.
Wegelin O, van Melick HHE, Hooft L, Bosch JLHR, Reitsma HB, Barentsz JO, et al. Evaluating three totally different methods for magnetic resonance imaging-targeted prostate biopsies: a systematic overview of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration. Is there a most popular method? Eur Urol. 2017;71(4):517–31.
Pirola GM, Castellani D, Orecchia L, Giulioni C, Gubbiotti M, Rubilotta E, et al. Transperineal US-MRI fusion-guided biopsy for the detection of scientific important prostate cancer: a systematic overview and meta-analysis evaluating cognitive and software-assisted method. Cancers (Basel). 2023;30;15(13):3443.
Turkbey B, Haider MA. Artificial intelligence for automated cancer detection on prostate MRI: alternatives and ongoing challenges, from the AJR Particular Sequence on AI Purposes. AJR Am J Roentgenol. 2022;219(2):188–94.
Zhao LT, Liu ZY, Xie WF, Shao LZ, Lu J, Tian J, et al. What profit might be obtained from magnetic resonance imaging analysis with artificial intelligence in prostate cancer in contrast with scientific assessments? Mil Med Res. 2023;10(1):29.
Labus S, Altmann MM, Huisman H, Tong A, Penzkofer T, Choi MH, et al. A concurrent, deep learning-based computer-aided detection system for prostate multiparametric MRI: a efficiency research involving skilled and less-experienced radiologists. Eur Radiol. 2023;33(1):64–76.
Solar YK, Zhou BY, Miao Y, Shi YL, Xu SH, Wu DM, et al. Three-dimensional convolutional neural community mannequin to establish clinically important prostate cancer in transrectal ultrasound movies: a potential, multi-institutional, diagnostic research. EClinicalMedicine. 2023;60: 102027.
Thomas M, Murali S, Simpson BSS, Freeman A, Kirkham A, Kelly D, et al. Use of artificial intelligence in the detection of main prostate cancer in multiparametric MRI with its scientific outcomes: a protocol for a systematic overview and meta-analysis. BMJ Open. 2023;22;13(8):e074009.
Hiremath A, Shiradkar R, Fu P, Mahran A, Rastinehad AR, Tewari A, et al. An built-in nomogram combining deep studying, Prostate Imaging-Reporting and Information System (PI-RADS) scoring, and scientific variables for identification of clinically important prostate cancer on biparametric MRI: a retrospective multicentre research. Lancet Digit Well being. 2021;3(7):e445–54.
Zhao L, Bao J, Qiao X, Jin P, et al. Predicting clinically important prostate cancer with a deep studying method: a multicentre retrospective research. Eur J Nucl Med Mol Imaging. 2023;50(3):727–41.
Solar Z, Wu P, Cui Y, Liu X, Wang Okay, Gao G, et al. Deep-learning fashions for detection and localization of seen clinically important prostate cancer on multi-parametric MRI. J Magn Reson Imaging. 2023;58(4):1067–81.
Solar Z, Wang Okay, Kong Z, Xing Z, Chen Y, Luo N, et al. A multicenter research of artificial intelligence-aided software program for detecting seen clinically important prostate cancer on mpMRI. Insights Imaging. 2023;14(1):72.
Watts KL, Frechette L, Muller B, Ilinksy D, Kovac E, Sankin A, et al. Systematic overview and meta-analysis evaluating cognitive vs. image-guided fusion prostate biopsy for the detection of prostate cancer. Urol Oncol. 2020;38(9):734.e19–734.e25.
Cornford P, van den Bergh RCN, Briers E, Van den Broeck T, Brunckhorst O, Darraugh J, et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG pointers on prostate cancer-2024 replace. half i: screening, analysis, and native therapy with healing intent. Eur Urol. 2024;86(2):148–63.
Zhu Y, Wei R, Gao G, Ding L, Zhang X, Wang X, et al. Absolutely computerized segmentation on prostate MR pictures based mostly on cascaded absolutely convolution community. J Magn Reson Imaging. 2019;49(4):1149–56.
Moore CM, Kasivisvanathan V, Eggener S, Emberton M, Fütterer JJ, Gill IS, et al. Requirements of reporting for MRI-targeted biopsy research (START) of the prostate: suggestions from an Worldwide Working Group. Eur Urol. 2013;64(4):544–52.
Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA, et al. The 2014 Worldwide Society of Urological Pathology (ISUP) consensus convention on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol. 2016;40(2):244–52.
Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et al. In direction of full and correct reporting of research of diagnostic accuracy: The STARD Initiative. Radiology. 2003;226(1):24–8.
Checcucci E, Amparore D, De Luca S, Autorino R, Fiori C, Porpiglia F. Precision prostate cancer surgical procedure: an outline of new applied sciences and methods. Minerva Urol Nefrol. 2019;71(5):487–501.
Khoo CC, Eldred-Evans D, Peters M, van Son M, van Rossum PSN, Connor MJ, et al. A comparability of prostate cancer detection between visible estimation (cognitive registration) and picture fusion (software program registration) focused transperineal prostate biopsy. J Urol. 2021;205(4):1075–81.
Ippoliti S, Orecchia L, Esperto F, Langer Wroclawski M, Manenti G, Barrett T, et al. Survey on prostate MRI studying and interpretation amongst urology residents in Italy, Brazil and the UK: a cry for assist. Minerva Urol Nephrol. 2023;75(3):297–307.
Connor MJ, Gorin MA, Eldred-Evans D, Bass EJ, Desai A, Dudderidge T, et al. Landmarks in the evolution of prostate biopsy. Nat Rev Urol. 2023;20(4):241–58.
Hamid S, Donaldson IA, Hu Y, Rodell R, Villarini B, Bonmati E, et al. The SmartTarget biopsy trial: a potential, within-person randomised, blinded trial evaluating the accuracy of visual-registration and magnetic resonance imaging/ultrasound image-fusion focused biopsies for prostate cancer danger stratification. Eur Urol. 2019;75(5):733–40.
Liang L, Cheng Y, Qi F, Zhang L, Cao D, Cheng G, et al. A comparative research of prostate cancer detection price between transperineal COG-TB and transperineal FUS-TB in sufferers with PSA ≤20 ng/mL. J Endourol. 2020;34(10):1008–14.
Izadpanahi MH, Elahian A, Gholipour F, Khorrami MH, Zargham M, Mohammadi Sichani M, et al. Diagnostic yield of fusion magnetic resonance-guided prostate biopsy versus cognitive-guided biopsy in biopsy-naive sufferers: a head-to-head randomized controlled trial. Prostate Cancer Prostatic Dis. 2021;24(4):1103–9.
Wang X, Xie Y, Zheng X, Liu B, Chen H, Li J, et al. A potential multi-center randomized comparative trial evaluating outcomes of transrectal ultrasound (TRUS)-guided 12-core systematic biopsy, mpMRI-targeted 12-core biopsy, and artificial intelligence ultrasound of prostate (AIUSP) 6-core focused biopsy for prostate cancer analysis. World J Urol. 2023;41(3):653–62.
Teică RV, Șerbănescu MS, Florescu LM, Gheonea IA. Tumor space highlighting utilizing T2WI, ADC map, and DWI sequence fusion on bpMRI pictures for higher prostate cancer analysis. Life (Basel). 2023; 30;13(4):910.
Schröder FH, Hugosson J, Roobol MJ, Tammela TLJ, Ciatto S, Nelen V, et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med. 2012;366(11):981–90.
Baydoun A, Jia AY, Zaorsky NG, Kashani R, Rao S, Shoag JE, et al. Artificial intelligence functions in prostate cancer. Prostate Cancer Prostatic Dis. 2024;27(1):37–45.
Kartasalo Okay, Bulten W, Delahunt B, et al. Artificial intelligence for analysis and Gleason grading of prostate cancer in biopsies-current standing and subsequent steps. Eur Urol Focus. 2021;7(4):687–91.
Pepe P, Pepe L, Cosentino S, Ippolito M, Pennisi M, Fraggetta F. Detection price of 68Ga-PSMA PET/CT vs. mpMRI focused biopsy for clinically important prostate cancer. Anticancer Res. 2022;42(6):3011–5.
Lombardo R, Tema G, Nacchia A, Mancini E, Franco S, Zammitti F, et al. Position of perilesional sampling of sufferers present process fusion prostate biopsies. Life (Basel). 2023;13(8):1719.
Pepe P, Pennisi M. Focused biopsy in males excessive danger for prostate cancer: 68Ga-PSMA PET/CT versus mpMRI. Clin Genitourin Cancer. 2023;21(6):639–42.
Qiu DX, Li J, Zhang JW, Chen MF, Gao XM, Tang YX, et al. Twin-tracer PET/CT-targeted, mpMRI-targeted, systematic biopsy, and mixed biopsy for the analysis of prostate cancer: a pilot research. Eur J Nucl Med Mol Imaging. 2022;49(8):2821–32.
Pepe P, Pennisi M. Morbidity following transperineal prostate biopsy: our expertise in 8.500 males. Arch Ital Urol Androl. 2022;94(2):155–9.
Pepe P, Fandella A, Barbera M, Martino P, Merolla F, Caputo A, et al. Advances in radiology and pathology of prostate cancer: a overview for the pathologist. Pathologica. 2024;116(1):1–12.
Pradere B, Veeratterapillay R, Dimitropoulos Okay, Yuan Y, Omar MI, MacLennan S, et al. Nonantibiotic methods for the prevention of infectious issues following prostate biopsy: a systematic overview and meta-analysis. J Urol. 2021;205(3):653–63.
Wegelin O, Exterkate L, van der Leest M, Kelder JC, Bosch JLHR, Barentsz JO, et al. Issues and adversarial occasions of three magnetic resonance imaging-based goal biopsy methods in the analysis of prostate cancer amongst males with prior damaging biopsies: outcomes from the FUTURE trial, a multicentre randomised controlled trial. Eur Urol Oncol. 2019;2(6):617–24.
Hu JC, Assel M, Allaf ME, Ehdaie B, Vickers AJ, Cohen AJ, et al. Transperineal versus transrectal magnetic resonance imaging-targeted and systematic prostate biopsy to forestall infectious issues: the PREVENT randomized trial. Eur Urol. 2024;86(1):61–8.
Uleri A, Baboudjian M, Tedde A, Gallioli A, Lengthy-Depaquit T, Palou J, et al. Is there an affect of transperineal versus transrectal magnetic resonance imaging-targeted biopsy in clinically important prostate cancer detection price? A scientific overview and meta-analysis. Eur Urol Oncol. 2023;6(6):621–8.
Zattoni F, Fasulo V, Kasivisvanathan V, Kesch C, Marra G, Martini A, et al. Enhancing prostate cancer detection accuracy in magnetic resonance imaging-targeted prostate biopsy: optimizing the quantity of cores taken. Eur Urol Open Sci. 2024;66:16–25.