Stamboliev, E. & Christiaens, T. How empty is reliable AI? A discourse evaluation of the ethics tips of reliable AI. Crit. Coverage Stud. n/a, 1–18. https://doi.org/10.1080/19460171.2024.2315431 (2024).
Pink, S., Quilty, E., Grundy, J., Hoda, R. & Trust Artificial Intelligence and Software program Practitioners: An Interdisciplinary Agenda 1–14. https://doi.org/10.1007/s00146-024-01882-7 (AI & Society, 2024)
Raz, A., Heinrichs, B., Avnoon, N., Eyal, G. & Inbar, Y. Prediction and explainability in AI: putting a brand new steadiness? Massive Knowledge Soc. 11, 1–5. https://doi.org/10.1177/20539517241235871 (2024).
de Gil, H., Goyanes, M. & Durotoye, T. A. Scholarly definition of artificial intelligence (AI): advancing AI as a conceptual framework in communication analysis. Polit. Commun. 41, 317–334. https://doi.org/10.1080/10584609.2023.2290497 (2024).
Nyholm, S. Artificial intelligence and human enhancement: can AI applied sciences make us extra (artificially) clever? Camb. Q. Healthc. Ethics. 33, 76–88. https://doi.org/10.1017/S0963180123000464 (2024).
Łapińska, J. et al. Zaufanie Pracowników do Sztucznej Inteligencji w Przedsiebiorstwach Przemysłowych Funkcjonujacych w Polsce. Raport z badania [Employees’ Trust in Artificial Intelligence in Industrial Enterprises Operating in Poland. Research Report] (Institute of Financial Analysis, 2020).
Gillespie, N., Lockey, S. & Curtis, C. Trust in Artificial Intelligence: Australian Insights (The College of Queensland and KPMG Australia, 2023).
Sztompka, P. Socjologia. Wykłady o społeczeństwie [Sociology. Lectures on Society] (Znak Horyzont, 2021).
Lewis, J. D. & Weigert, A. Trust as a social actuality. Soc. Forces. 63, 967–985. https://doi.org/10.2307/2578601 (1985).
Ejdys, J. Constructing expertise trust in ICT utility at a college. Int. J. Emerg. Markets. 13, 980–997. https://doi.org/10.1108/IJoEM-07-2017-0234 (2018).
Pistilli, L. & Pennarola, F. 87–101 (Springer Worldwide Publishing).
Lockey, S., Gillespie, N. & Holm, D. & Asadi Someh, I. In 54th Hawaii Worldwide Convention on System Sciences 5463–5472 (HICSS).
Yi, Y., Wu, Z. & Tung, L. L. How particular person variations affect expertise utilization conduct? Towards an built-in framework. J. Comput. Inform. Syst. 46, 52–63. https://doi.org/10.1080/08874417.2006.11645883 (2005).
Zdun, M. Innowacje. Perspektywa społeczno-kulturowa [Innovations: A Socio-Cultural Perspective] (Wydawnictwo KUL, 2016).
Webb, L. & Felix, J. Use of Artificial Intelligence in Training Supply and Evaluation (UK Parliament, 2024).
Digital Care. Technologia okiem studenta [Technology From a Student’s Perspective] (Digital Care, 2023).
Walters, W. H. The effectiveness of software program designed to detect AI-generated writing: a comparability of 16 AI textual content detectors. Open. Inform. Sci. 7, 1–24. https://doi.org/10.1515/opis-2022-0158 (2023).
Niu, W., Zhang, W., Zhang, C. & Chen, X. The function of artificial intelligence autonomy in larger training: A makes use of and gratification perspective. Sustainability 16, 1–26. https://doi.org/10.3390/su16031276 (2024).
Holmes, W., Persson, J., Chounta, I. A., Wasson, B. & Dimitrova, V. Artificial Intelligence and Training. A Crucial view via the lens of Human Rights, Democracy and the rule of legislation (Council of Europe Publishing, 2023).
Clark, J. & Perrault, R. Artificial Intelligence Index Report 2023 (Stanford College Human-Centered Artificial Intelligence, 2024).
Wendler, C., Veselovsky, V., Monea, G. & West, R. Do Llamas Work in English? On the Latent Language of Multilingual Transformers 1–28. https://doi.org/10.48550/arXiv.2402.10588 (ArXiv, 2024).
Schwab, Ok. & Zahidi, S. How International locations are Acting on the Highway to Restoration: The World Competitiveness Report (World Financial Discussion board, 2020).
Amoozadeh, M. et al. Affiliation for computing equipment. In Proceedings of the fifty fifth ACM Technical Symposium on Pc Science Training V., vol. 1, 67–73 (2024).
Hatem, N. A. H., Ibrahim, M. I. M. & Yousuf, S. A. Yemeni college students public perceptions towards the use of artificial intelligence in healthcare: a cross-sectional research (2024).
Novozhilova, E., Mays, Ok., Paik, S. & Katz, J. E. Extra succesful, much less benevolent: trust perceptions of AI techniques throughout Societal contexts. Mach. Be taught. Knowl. Extr. 6, 342–366. https://doi.org/10.3390/make6010017 (2024).
Obenza, B. et al. The mediating impact of AI trust on AI self-efficacy and angle towards AI of Faculty Students. Int. J. Metaverse (IJM). 2, 1–10. https://doi.org/10.54536/ijm.v2i1.2286 (2024).
Choung, H., David, P. & Ross, A. Trust in AI and its function in the acceptance of AI applied sciences. Int. J. Hum.–Comput. Work together. 39, 1727–1739. https://doi.org/10.1080/10447318.2022.2050543 (2023).
Polyportis, A. & Pahos, N. Understanding students’ adoption of the ChatGPT Chatbot in Greater Training: the function of Anthropomorphism, Trust, Design Novelty and Institutional Coverage. Behav. Inform. Technol. 1–22. https://doi.org/10.1080/0144929X.2024.2317364 (2024).
Qin, F., Li, Ok. & Yan, J. Understanding person trust in artificial intelligence-based academic techniques: proof from China. Br. J. Edu. Technol. 51, 1693–1710. https://doi.org/10.1111/bjet.12994 (2020).
Conijn, R., Kahr, P. & Snijders, C. The results of explanations in automated essay scoring techniques on pupil trust and motivation. J. Be taught. Anal. 10, 37–53. https://doi.org/10.18608/jla.2023.7801 (2023).
Syed, W., Basil, A. & Al-Rawi, M. Evaluation of consciousness, perceptions, and opinions in the direction of artificial intelligence among healthcare students in Riyadh, Saudi Arabia. Medicina 59, 1–12. https://doi.org/10.3390/medicina59050828 (2023).
Strzelecki, A. Students’ acceptance of ChatGPT in Greater Training: an prolonged unified idea of acceptance and use of expertise. Innov. Excessive. Educ. https://doi.org/10.1007/s10755-023-09686-1 (2023).
Dashti, M. et al. Attitudes, information, and perceptions of dentists and dental students towards artificial intelligence: a scientific evaluation. J. Taibah Univ. Med. Sci. 19, 327–337. https://doi.org/10.1016/j.jtumed.2023.12.010 (2024).
Strzelecki, A. & ElArabawy, S. Investigation of the moderation impact of gender and research degree on the acceptance and use of generative AI by larger training students: comparative proof from Poland and Egypt. Br. J. Academic Technol.. 1–22. https://doi.org/10.1111/bjet.13425 (2023).
Mantello, P., Ho, M. T., Nguyen, M. H. & Vuong, Q. H. Bosses with out a coronary heart: Socio-demographic and cross-cultural determinants of angle towards emotional AI in the Office. AI Soc. 38, 97–119. https://doi.org/10.1007/s00146-021-01290-1 (2023).
Kozak, J. & Fel, S. The connection between Religiosity Degree and emotional responses to Artificial Intelligence in College students. Religions 15, 1–18. https://doi.org/10.3390/rel15030331 (2024).
Tran, Ok. & Nguyen, T. Preliminary analysis on the social attitudes towards AI’s involvement in Christian Training in Vietnam: selling AI expertise for Spiritual Training. Religions 12, 1–20. https://doi.org/10.3390/rel12030208 (2021).
Vu, H. T. & Lim, J. Results of Nation and Particular person Factors on Public Acceptance of Artificial Intelligence and Robotics Applied sciences: a Multilevel SEM evaluation of 28-Nation Survey Knowledge. Behav. Inform. Technol. 41, 1515–1528. https://doi.org/10.1080/0144929X.2021.1884288 (2022).
Bokhari, S. A. A. & Myeong, S. An evaluation of artificial intelligence adoption conduct making use of prolonged UTAUT framework in City Cities: The context of collectivistic tradition. Eng. Proc. 56, 1–7. https://doi.org/10.3390/ASEC2023-15963 (2023).
Ismatullaev, U. V. U. & Kim, S. H. Evaluation of the factors affecting acceptance of AI-Infused techniques. Hum. Factors. 66, 126–144. https://doi.org/10.1177/00187208211064707 (2024).
Sadlon, W. The social exercise of polish migrants in the Republic of Eire from the perspective of their religiosity. Rev. Spiritual Res. 64, 907–932. https://doi.org/10.1007/s13644-022-00504-2 (2022).
Phukan, S. Ok. & Hazarika, J. P. Affect and factors related to private community measurement of underage drinkers recruited via respondent-driven sampling in Dibrugarh District of Assam, India. J. Well being Manag. 1–9. https://doi.org/10.1177/09720634241237590 (2024).
White, R. Respondent pushed sampling—the place we’re and the place ought to we be going? Intercourse. Transm. Infect. 88, 397–399. https://doi.org/10.1136/sextrans-2012-050703 (2012).
Sperandei, S., Bastos, L. S., Ribeiro-Alves, M., Reis, A. & Bastos, F. I. assessing logistic regression utilized to respondent-driven sampling research: a simulation research with an utility to empirical knowledge. Int. J. Soc. Res. Methodol. 26, 319–333. https://doi.org/10.1080/13645579.2022.2031153 (2023).
Raifman, S., DeVost, M. A., Digitale, J. C., Chen, Y. H. & Morris, M. D. Respondent-driven sampling: a sampling technique for hard-to-reach populations and past. Curr. Epidemiol. Rep. 9, 38–47. https://doi.org/10.1007/s40471-022-00287-8 (2022).
GUS. Szkolnictwo wyższe w roku akademickim 2022/2023 [Higher Education in the Academic Year 2022/2023]. (Główny Urząd Statystyczny, 2023).
Navarrete, M. S., Adrian, C. & Bachelet, V. C. Respondent-driven sampling: benefits and disadvantages from a sampling technique. Medwave 21, e8513. https://doi.org/10.5867/medwave.2022.01.002528 (2022).
Brainard, J., Smith, L. E., Potts, H. W. W. & Rubin, G. J. The connection between age and intercourse accomplice counts throughout the Mpox Outbreak in the UK, 2022. Plos One. 18, 1–15. https://doi.org/10.1371/journal.pone.0291001 (2023).
Neves, J. & Sephenson, R. Pupil Educational Expertise Survey 2023 (Greater Training Coverage Institute, 2023).
Bolton, P. Greater Training Pupil Numbers (Home of Commons, 2024).
Feng, S. & Huang, F. Does survey mode matter? An experimental analysis of knowledge high quality in China. An experimental analysis of knowledge high quality in China, 1–26. https://doi.org/10.2139/ssrn.4739234 (2024).
Rosenberg, M. J. & Hovland, C. I. in In Perspective Group and Change: An Evaluation of Consistency among Perspective Parts 1–14 (eds Rosenberg, M. J., Carl, I. & Hovland) (Yale College Press, 1960).
Cwynar, A., Świecka, B., Filipek, Ok. & Porzak, R. Shoppers’ information of cashless funds: growth, validation, and usability of a measurement scale. J. Consum. Aff. 56, 640–665. https://doi.org/10.1111/joca.12424 (2022).
Cheung, S. F., Pesigan, I. J. A. & Vong, W. N. DIY bootstrapping: getting the nonparametric bootstrap confidence interval in SPSS for any statistics or perform of statistics (when this Bootstrapping is suitable). Behav. Res. Strategies. 55, 474–490. https://doi.org/10.3758/s13428-022-01808-5 (2023).
Xiong, Y., Shi, Y., Pu, Q. & Liu, N. Extra trust or extra threat? Consumer acceptance of artificial intelligence digital assistant. Human Factors and Ergonomics in Manufacturing & Service Industries n/a, 1–16. https://doi.org/10.1002/hfm.21020 (2023).
Horodyski, P. Recruiter’s notion of artificial intelligence (AI)-based instruments in recruitment. Computer systems Hum. Behav. Rep. 10, 1–10. https://doi.org/10.1016/j.chbr.2023.100298 (2023).
Mousavi Baigi, S. F. et al. Attitudes, information, and abilities in the direction of artificial intelligence among healthcare students: a scientific evaluation. Well being Sci. Rep. 6, 1–23. https://doi.org/10.1002/hsr2.1138 (2023).
Yang, R. & Wibowo, S. Consumer trust in artificial intelligence: a complete conceptual framework. Electron. Markets. 32, 2053–2077. https://doi.org/10.1007/s12525-022-00592-6 (2022).
Mustafa, S., Zhang, W., Shehzad, M. U., Anwar, A. & Rubakula, G. Does well being consciousness matter to undertake new expertise? An built-in mannequin of UTAUT2 with SEM-fsQCA strategy. Entrance. Psychol. 13, 1–19. https://doi.org/10.3389/fpsyg.2022.836194 (2022).
Greiner, B. & Zednik, A. Trust and age: an experiment with present and former students. Econ. Lett. 181, 37–39. https://doi.org/10.1016/j.econlet.2019.04.004 (2019).
Mustafa, S. et al. Digital students’ satisfaction with and intention to Use On-line instructing modes, function of massive 5 persona traits. Entrance. Psychol. 13, 1–14. https://doi.org/10.3389/fpsyg.2022.956281 (2022).
Grassini, S. Shaping the way forward for training: exploring the potential and penalties of AI and ChatGPT in academic settings. Educ. Sci. 13, 1–13. https://doi.org/10.3390/educsci13070692 (2023).
Mustafa, S., Zhang, W., Anwar, S., Jamil, Ok. & Rana, S. An built-in mannequin of UTAUT2 to perceive shoppers’ 5G expertise acceptance utilizing SEM-ANN strategy. Sci. Rep. 12, 1–19. https://doi.org/10.1038/s41598-022-24532-8 (2022).
Xia, J., Li, M. & Li, J. Comparative Evaluation Imaginative and prescient of Worldwide AI Programs 1–9. https://doi.org/10.48550/arXiv.2407.16881 (arXiv, 2024)
Huang, J. & Tan, M. The function of ChatGPT in Scientific Communication: writing Higher Scientific Evaluation Articles. Am. J. Most cancers Res. 13, 1148–1154 (2023).
Fitria, T. N. Artificial intelligence (AI) expertise in OpenAI ChatGPT utility: a evaluation of ChatGPT in writing English essay. J. Engl. Lang. Educate. 12, 44–58. https://doi.org/10.15294/elt.v12i1.64069 (2023).
Alkhowaiter, W. A. Use and behavioural intention of M-Fee in GCC international locations: extending Meta-UTAUT with trust and Islamic Religiosity. J. Innov. Knowl. 7, 1–11. https://doi.org/10.1016/j.jik.2022.100240 (2022).
Akinnuwesi, B. A. et al. A modified UTAUT mannequin for the acceptance and use of digital expertise for tackling COVID-19. Maintain. Oper. Comput. 3, 118–135. https://doi.org/10.1016/j.susoc.2021.12.001 (2022).
Vogler, R. An AI College House Odyssey. Robon. J. Autom. Econ. 5, 1–7 (2023).