Categories
News

Comparison between AI and human expert performance in acute pain assessment in sheep


  • Davenport, T. & Kalakota, R. The potential for synthetic intelligence in healthcare. Fut. Healthc. J. 6(2), 94 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Bajwa, J., Munir, U., Nori, A. & Williams, B. Synthetic intelligence in healthcare: Remodeling the observe of medication. Fut. Healthc. J. 8(2), 188 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Zamzmi, G. et al. A evaluation of automated pain assessment in infants: Options, classification duties, and databases. IEEE Rev. Biomed. Eng. 11, 77–96 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Atee, M., Hoti, Ok. & Hughes, J. (textual content{Painchek}^{{rm TM}}) use in scientific observe: A man-made intelligence (AI) assisted-pain assessment device for aged care residents with dementia. In: seventeenth IASP World Congress on Pain 2018 (2018).

  • Hoti, Ok., Chivers, P. T. & Hughes, J. D. Assessing procedural pain in infants: A feasibility examine evaluating a point-of-care cell resolution primarily based on automated facial evaluation. The Lancet Digital Well being 3(10), 623–634 (2021).

    Article 

    Google Scholar
     

  • Hughes, J. D., Chivers, P. & Hoti, Ok. The scientific suitability of a synthetic intelligence-enabled pain assessment device to be used in infants: Feasibility and usability analysis examine. J. Med. Web Res. 25, 41992 (2023).

    Article 

    Google Scholar
     

  • Broome, S. et al. Going deeper than monitoring: A survey of computer-vision primarily based recognition of animal pain and feelings. Int. J. Comput. Imaginative and prescient 131(2), 572–590 (2023).

    Article 

    Google Scholar
     

  • Andresen, N. et al. In the direction of a completely automated surveillance of well-being standing in laboratory mice utilizing deep studying: Beginning with facial features evaluation. PLoS ONE 15(4), 0228059 (2020).

    Article 

    Google Scholar
     

  • Tuttle, A. H. et al. A deep neural community to evaluate spontaneous pain from mouse facial expressions. Mol. Pain 14, 1744806918763658 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lencioni, G. C., de Sousa, R. V., de Souza Sardinha, E. J., Corrêa, R. R. & Zanella, A. J. Pain assessment in horses utilizing computerized facial features recognition by means of deep learning-based modeling. PLoS ONE 16(10), 0258672 (2021).

    Article 

    Google Scholar
     

  • Broomé, S., Gleerup, Ok.B., Andersen, P.H. & Kjellstrom, H. Dynamics are vital for the popularity of equine pain in video. In: Proceedings of the IEEE/CVF convention on pc imaginative and prescient and sample recognition, pp. 12667–12676 (2019).

  • Pessanha, F., Salah, A. A., Loon, T. V. & Veltkamp, R. Facial image-based computerized assessment of equine pain. IEEE Trans. Have an effect on. Comput.[SPACE]https://doi.org/10.1109/TAFFC.2022.3177639 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Feighelstein, M. et al. Automated recognition of pain in cats. Sci. Rep. 12(1), 9575 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feighelstein, M. et al. Explainable automated pain recognition in cats. Sci. Rep. 13(1), 8973 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feighelstein, M. et al. Deep studying for video-based automated pain recognition in rabbits. Sci. Rep. 13(1), 14679 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, H., Salgırlı, Y., Can, P., Atılgan, D. & Salah, A.A. Video-based estimation of pain indicators in canine. arXiv preprint arXiv:2209.13296 (2022).

  • Mahmoud, M., Lu, Y., Hou, X., McLennan, Ok. & Robinson, P. Estimation of pain in sheep utilizing pc imaginative and prescient. Handbook of Pain and Palliative Care: Biopsychosocial and environmental approaches for the life course, 145–157 (2018).

  • Pessanha, F., McLennan, Ok. & Mahmoud, M. In the direction of computerized monitoring of illness development in sheep: A hierarchical mannequin for sheep facial expressions evaluation from video. In: 2020 fifteenth IEEE worldwide convention on computerized face and gesture recognition (FG 2020), pp. 387–393 (2020).

  • McLennan, Ok. & Mahmoud, M. Growth of an automatic pain facial features detection system for sheep (ovis aries). Animals 9(4), 196 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Labus, J. S., Keefe, F. J. & Jensen, M. P. Self-reports of pain depth and direct observations of pain habits: When are they correlated?. Pain 102(1–2), 109–124 (2003).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Barrett, L. F. Emotions or phrases? Understanding the content material in self-report rankings of skilled emotion. J. Pers. Soc. Psychol. 87(2), 266–281 (2004).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mogil, J. S., Pang, D. S., Dutra, G. G. S. & Chambers, C. T. The event and use of facial grimace scales for pain measurement in animals. Neurosci. Biobehav. Rev. 116, 480–493 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sotocina, S. G. et al. The rat grimace scale: {A partially} automated technique for quantifying pain in the laboratory rat through facial expressions. Mol. Pain 7, 1744–8069 (2011).

    Article 

    Google Scholar
     

  • Keating, S. C., Thomas, A. A., Flecknell, P. A. & Leach, M. C. Analysis of EMLA cream for stopping pain throughout tattooing of rabbits: Adjustments in physiological, behavioural and facial features responses. PloS one[SPACE], https://doi.org/10.1371/journal.pone.0044437 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalla Costa, E. et al. Growth of the horse grimace scale (hgs) as a pain assessment device in horses present process routine castration. PLoS ONE 9(3), 92281 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Di Giminiani, P. et al. The assessment of facial expressions in piglets present process tail docking and castration: Towards the event of the piglet grimace scale. Entrance. Veter. Sci. 3, 100 (2016).


    Google Scholar
     

  • Reijgwart, M. L. et al. The composition and preliminary analysis of a grimace scale in ferrets after surgical implantation of a telemetry probe. PLoS ONE 12(11), 0187986 (2017).

    Article 

    Google Scholar
     

  • McLennan, Ok. M. et al. Growth of a facial features scale utilizing footrot and mastitis as fashions of pain in sheep. Appl. Anim. Behav. Sci. 176, 19–26 (2016).

    Article 

    Google Scholar
     

  • Häger, C. et al. The sheep grimace scale as an indicator of post-operative misery and pain in laboratory sheep. PLoS ONE 12(4), 0175839 (2017).

    Article 

    Google Scholar
     

  • Holden, E. et al. Analysis of facial features in acute pain in cats. J. Small Anim. Pract. 55(12), 615–621 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evangelista, M. C. et al. Facial expressions of pain in cats: The event and validation of a feline grimace scale. Sci. Report 9(1), 1–11 (2019).

    Article 

    Google Scholar
     

  • Brondani, J. T. et al. Validation of the english model of the unesp-botucatu multidimensional composite pain scale for assessing postoperative pain in cats. BMC Vet. Res. 9(1), 1–15 (2013).

    Article 

    Google Scholar
     

  • Reid, J. et al. Growth of the short-form glasgow composite measure pain scale (cmps-sf) and derivation of an analgesic intervention rating. Anim. Welf. 16(S1), 97–104 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Haddad Pinho, R. et al. Validation of the rabbit pain behaviour scale (rpbs) to evaluate acute postoperative pain in rabbits (oryctolagus cuniculus). PLoS One 17(5), 0268973 (2022).

    Article 

    Google Scholar
     

  • Luna, S. P. L. et al. Validation of the unesp-botucatu pig composite acute pain scale (upaps). PLoS One 15(6), 0233552 (2020).

    Article 

    Google Scholar
     

  • Fonseca, M. W. et al. Growth and validation of the unesp-botucatu goat acute pain scale. Animals 13(13), 2136 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, N. et al. Correction: Validation of the unesp-botucatu composite scale to evaluate acute postoperative belly pain in sheep (usaps). PLoS ONE 17, 0268305. https://doi.org/10.1371/journal.pone.0268305 (2022).

    Article 

    Google Scholar
     

  • Oliveira, M. G. et al. Validation of the donkey pain scale (dops) for assessing postoperative pain in donkeys. Entrance. Veter. Sci. 8, 671330 (2021).

    Article 

    Google Scholar
     

  • de Oliveira, F. A. et al. Validation of the unesp-botucatu unidimensional composite pain scale for assessing postoperative pain in cattle. BMC Veter. Res. 10, 1–14 (2014).

    CAS 

    Google Scholar
     

  • De Sario, G. D. et al. Utilizing ai to detect pain by means of facial expressions: A evaluation. Bioengineering 10(5), 548 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. E. & Smart, E. A. Gender bias in the statement of experimental pain. Pain 104(1–2), 259–264 (2003).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Contreras-Huerta, L. S., Baker, Ok. S., Reynolds, Ok. J., Batalha, L. & Cunnington, R. Racial bias in neural empathic responses to pain. PLoS ONE 8(12), 84001 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Adami, C., Filipas, M., John, C., Skews, Ok. & Dobson, E. Inter-observer reliability of three feline pain scales used in scientific observe. J. Feline Med. Surg. 25(9), 1098612–231194423 (2023).

    Article 

    Google Scholar
     

  • Reid, J., Scott, E., Calvo, G. & Nolan, A. Definitive glasgow acute pain scale for cats: Validation and intervention stage. Veterin. Document. [SPACE], https://doi.org/10.1136/vr.104208 (2017).

    Article 

    Google Scholar
     

  • Shipley, H., Guedes, A., Graham, L., Goudie-DeAngelis, E. & Wendt-Hornickle, E. Preliminary appraisal of the reliability and validity of the colorado state college feline acute pain scale. J. Feline Med. Surg. 21(4), 335–339 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Weber, G., Morton, J. & Keates, H. Postoperative pain and perioperative analgesic administration in canine: Practices, attitudes and beliefs of Queensland veterinarians. Aust. Vet. J. 90(5), 186–193 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, V., Lascelles, B. & Robson, M. Present attitudes to, and use of, peri-operative analgesia in canine and cats by veterinarians in New Zealand. N. Z. Vet. J. 53(3), 193–202 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bell, A., Helm, J. & Reid, J. Veterinarians’ attitudes to power pain in canine. Veter. Document 175(17), 428–428 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. & Altman, D. G. Animal analysis: Reporting in vivo experiments: The arrive tips. Br. J. Pharmacol. 160(7), 1577 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banks, R. The 4 Rs of analysis. Contemp. Prime. Lab. Anim. Sci. 34(1), 50–51 (1995).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Russell, W.M.S. & Burch, R.L. The ideas of humane experimental method. Methuen, (1959).

  • Teixeira, P. et al. Ovariectomy by laparotomy, a video-assisted strategy or an entire laparoscopic method in santa ines sheep. Small Rumin. Res. 99(2–3), 199–202 (2011).

    Article 

    Google Scholar
     

  • McLennan, Ok. M. et al. Growth of a facial features scale utilizing footrot and mastitis as fashions of pain in sheep. Appl. Anim. Behav. Sci. 176, 19–26. https://doi.org/10.1016/j.applanim.2016.01.007 (2016).

    Article 

    Google Scholar
     

  • Vikramkumar, Vijaykumar, B., Trilochan: Bayes and naive bayes classifier. arXiv:abs/1404.0933 (2014).

  • Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. Studying transferable visible fashions from pure language supervision. In: Worldwide convention on machine studying, pp. 8748–8763 (2021). PMLR.

  • Li, J. et al. Function choice: An information perspective. ACM Comput. Surv. (CSUR) 50(6), 1–45 (2017).

    Article 
    MATH 

    Google Scholar
     

  • DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Evaluating the areas below two or extra correlated receiver working attribute curves: A nonparametric strategy. Biometrics 44(3), 837–845 (1988).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lu, Y., Mahmoud, M. & Robinson, P. Estimating sheep pain stage utilizing facial motion unit detection. In: 2017 twelfth IEEE Worldwide convention on computerized face & gesture recognition (FG 2017), IEEE, pp. 394–399 (2017).

  • Evangelista, M. C., Monteiro, B. P. & Steagall, P. V. Measurement properties of grimace scales for pain assessment in nonhuman mammals: A scientific evaluation. Pain 163(6), 697–714 (2022).

    Article 

    Google Scholar
     

  • Tomacheuski, R. M., Monteiro, B. P., Evangelista, M. C., Luna, S. P. L. & Steagall, P. V. Measurement properties of pain scoring devices in cattle: A scientific evaluation utilizing the cosmin guidelines. PLoS ONE 18(1), 0280830 (2023).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *