Davenport, T. & Kalakota, R. The potential for synthetic intelligence in healthcare. Fut. Healthc. J. 6(2), 94 (2019).
Bajwa, J., Munir, U., Nori, A. & Williams, B. Synthetic intelligence in healthcare: Remodeling the observe of medication. Fut. Healthc. J. 8(2), 188 (2021).
Zamzmi, G. et al. A evaluation of automated pain assessment in infants: Options, classification duties, and databases. IEEE Rev. Biomed. Eng. 11, 77–96 (2017).
Atee, M., Hoti, Ok. & Hughes, J. (textual content{Painchek}^{{rm TM}}) use in scientific observe: A man-made intelligence (AI) assisted-pain assessment device for aged care residents with dementia. In: seventeenth IASP World Congress on Pain 2018 (2018).
Hoti, Ok., Chivers, P. T. & Hughes, J. D. Assessing procedural pain in infants: A feasibility examine evaluating a point-of-care cell resolution primarily based on automated facial evaluation. The Lancet Digital Well being 3(10), 623–634 (2021).
Hughes, J. D., Chivers, P. & Hoti, Ok. The scientific suitability of a synthetic intelligence-enabled pain assessment device to be used in infants: Feasibility and usability analysis examine. J. Med. Web Res. 25, 41992 (2023).
Broome, S. et al. Going deeper than monitoring: A survey of computer-vision primarily based recognition of animal pain and feelings. Int. J. Comput. Imaginative and prescient 131(2), 572–590 (2023).
Andresen, N. et al. In the direction of a completely automated surveillance of well-being standing in laboratory mice utilizing deep studying: Beginning with facial features evaluation. PLoS ONE 15(4), 0228059 (2020).
Tuttle, A. H. et al. A deep neural community to evaluate spontaneous pain from mouse facial expressions. Mol. Pain 14, 1744806918763658 (2018).
Lencioni, G. C., de Sousa, R. V., de Souza Sardinha, E. J., Corrêa, R. R. & Zanella, A. J. Pain assessment in horses utilizing computerized facial features recognition by means of deep learning-based modeling. PLoS ONE 16(10), 0258672 (2021).
Broomé, S., Gleerup, Ok.B., Andersen, P.H. & Kjellstrom, H. Dynamics are vital for the popularity of equine pain in video. In: Proceedings of the IEEE/CVF convention on pc imaginative and prescient and sample recognition, pp. 12667–12676 (2019).
Pessanha, F., Salah, A. A., Loon, T. V. & Veltkamp, R. Facial image-based computerized assessment of equine pain. IEEE Trans. Have an effect on. Comput.[SPACE]https://doi.org/10.1109/TAFFC.2022.3177639 (2022).
Feighelstein, M. et al. Automated recognition of pain in cats. Sci. Rep. 12(1), 9575 (2022).
Feighelstein, M. et al. Explainable automated pain recognition in cats. Sci. Rep. 13(1), 8973 (2023).
Feighelstein, M. et al. Deep studying for video-based automated pain recognition in rabbits. Sci. Rep. 13(1), 14679 (2023).
Zhu, H., Salgırlı, Y., Can, P., Atılgan, D. & Salah, A.A. Video-based estimation of pain indicators in canine. arXiv preprint arXiv:2209.13296 (2022).
Mahmoud, M., Lu, Y., Hou, X., McLennan, Ok. & Robinson, P. Estimation of pain in sheep utilizing pc imaginative and prescient. Handbook of Pain and Palliative Care: Biopsychosocial and environmental approaches for the life course, 145–157 (2018).
Pessanha, F., McLennan, Ok. & Mahmoud, M. In the direction of computerized monitoring of illness development in sheep: A hierarchical mannequin for sheep facial expressions evaluation from video. In: 2020 fifteenth IEEE worldwide convention on computerized face and gesture recognition (FG 2020), pp. 387–393 (2020).
McLennan, Ok. & Mahmoud, M. Growth of an automatic pain facial features detection system for sheep (ovis aries). Animals 9(4), 196 (2019).
Labus, J. S., Keefe, F. J. & Jensen, M. P. Self-reports of pain depth and direct observations of pain habits: When are they correlated?. Pain 102(1–2), 109–124 (2003).
Barrett, L. F. Emotions or phrases? Understanding the content material in self-report rankings of skilled emotion. J. Pers. Soc. Psychol. 87(2), 266–281 (2004).
Mogil, J. S., Pang, D. S., Dutra, G. G. S. & Chambers, C. T. The event and use of facial grimace scales for pain measurement in animals. Neurosci. Biobehav. Rev. 116, 480–493 (2020).
Sotocina, S. G. et al. The rat grimace scale: {A partially} automated technique for quantifying pain in the laboratory rat through facial expressions. Mol. Pain 7, 1744–8069 (2011).
Keating, S. C., Thomas, A. A., Flecknell, P. A. & Leach, M. C. Analysis of EMLA cream for stopping pain throughout tattooing of rabbits: Adjustments in physiological, behavioural and facial features responses. PloS one[SPACE], https://doi.org/10.1371/journal.pone.0044437 (2012).
Dalla Costa, E. et al. Growth of the horse grimace scale (hgs) as a pain assessment device in horses present process routine castration. PLoS ONE 9(3), 92281 (2014).
Di Giminiani, P. et al. The assessment of facial expressions in piglets present process tail docking and castration: Towards the event of the piglet grimace scale. Entrance. Veter. Sci. 3, 100 (2016).
Reijgwart, M. L. et al. The composition and preliminary analysis of a grimace scale in ferrets after surgical implantation of a telemetry probe. PLoS ONE 12(11), 0187986 (2017).
McLennan, Ok. M. et al. Growth of a facial features scale utilizing footrot and mastitis as fashions of pain in sheep. Appl. Anim. Behav. Sci. 176, 19–26 (2016).
Häger, C. et al. The sheep grimace scale as an indicator of post-operative misery and pain in laboratory sheep. PLoS ONE 12(4), 0175839 (2017).
Holden, E. et al. Analysis of facial features in acute pain in cats. J. Small Anim. Pract. 55(12), 615–621 (2014).
Evangelista, M. C. et al. Facial expressions of pain in cats: The event and validation of a feline grimace scale. Sci. Report 9(1), 1–11 (2019).
Brondani, J. T. et al. Validation of the english model of the unesp-botucatu multidimensional composite pain scale for assessing postoperative pain in cats. BMC Vet. Res. 9(1), 1–15 (2013).
Reid, J. et al. Growth of the short-form glasgow composite measure pain scale (cmps-sf) and derivation of an analgesic intervention rating. Anim. Welf. 16(S1), 97–104 (2007).
Haddad Pinho, R. et al. Validation of the rabbit pain behaviour scale (rpbs) to evaluate acute postoperative pain in rabbits (oryctolagus cuniculus). PLoS One 17(5), 0268973 (2022).
Luna, S. P. L. et al. Validation of the unesp-botucatu pig composite acute pain scale (upaps). PLoS One 15(6), 0233552 (2020).
Fonseca, M. W. et al. Growth and validation of the unesp-botucatu goat acute pain scale. Animals 13(13), 2136 (2023).
Silva, N. et al. Correction: Validation of the unesp-botucatu composite scale to evaluate acute postoperative belly pain in sheep (usaps). PLoS ONE 17, 0268305. https://doi.org/10.1371/journal.pone.0268305 (2022).
Oliveira, M. G. et al. Validation of the donkey pain scale (dops) for assessing postoperative pain in donkeys. Entrance. Veter. Sci. 8, 671330 (2021).
de Oliveira, F. A. et al. Validation of the unesp-botucatu unidimensional composite pain scale for assessing postoperative pain in cattle. BMC Veter. Res. 10, 1–14 (2014).
De Sario, G. D. et al. Utilizing ai to detect pain by means of facial expressions: A evaluation. Bioengineering 10(5), 548 (2023).
Robinson, M. E. & Smart, E. A. Gender bias in the statement of experimental pain. Pain 104(1–2), 259–264 (2003).
Contreras-Huerta, L. S., Baker, Ok. S., Reynolds, Ok. J., Batalha, L. & Cunnington, R. Racial bias in neural empathic responses to pain. PLoS ONE 8(12), 84001 (2013).
Adami, C., Filipas, M., John, C., Skews, Ok. & Dobson, E. Inter-observer reliability of three feline pain scales used in scientific observe. J. Feline Med. Surg. 25(9), 1098612–231194423 (2023).
Reid, J., Scott, E., Calvo, G. & Nolan, A. Definitive glasgow acute pain scale for cats: Validation and intervention stage. Veterin. Document. [SPACE], https://doi.org/10.1136/vr.104208 (2017).
Shipley, H., Guedes, A., Graham, L., Goudie-DeAngelis, E. & Wendt-Hornickle, E. Preliminary appraisal of the reliability and validity of the colorado state college feline acute pain scale. J. Feline Med. Surg. 21(4), 335–339 (2019).
Weber, G., Morton, J. & Keates, H. Postoperative pain and perioperative analgesic administration in canine: Practices, attitudes and beliefs of Queensland veterinarians. Aust. Vet. J. 90(5), 186–193 (2012).
Williams, V., Lascelles, B. & Robson, M. Present attitudes to, and use of, peri-operative analgesia in canine and cats by veterinarians in New Zealand. N. Z. Vet. J. 53(3), 193–202 (2005).
Bell, A., Helm, J. & Reid, J. Veterinarians’ attitudes to power pain in canine. Veter. Document 175(17), 428–428 (2014).
Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. & Altman, D. G. Animal analysis: Reporting in vivo experiments: The arrive tips. Br. J. Pharmacol. 160(7), 1577 (2010).
Banks, R. The 4 Rs of analysis. Contemp. Prime. Lab. Anim. Sci. 34(1), 50–51 (1995).
Russell, W.M.S. & Burch, R.L. The ideas of humane experimental method. Methuen, (1959).
Teixeira, P. et al. Ovariectomy by laparotomy, a video-assisted strategy or an entire laparoscopic method in santa ines sheep. Small Rumin. Res. 99(2–3), 199–202 (2011).
McLennan, Ok. M. et al. Growth of a facial features scale utilizing footrot and mastitis as fashions of pain in sheep. Appl. Anim. Behav. Sci. 176, 19–26. https://doi.org/10.1016/j.applanim.2016.01.007 (2016).
Vikramkumar, Vijaykumar, B., Trilochan: Bayes and naive bayes classifier. arXiv:abs/1404.0933 (2014).
Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. Studying transferable visible fashions from pure language supervision. In: Worldwide convention on machine studying, pp. 8748–8763 (2021). PMLR.
Li, J. et al. Function choice: An information perspective. ACM Comput. Surv. (CSUR) 50(6), 1–45 (2017).
DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Evaluating the areas below two or extra correlated receiver working attribute curves: A nonparametric strategy. Biometrics 44(3), 837–845 (1988).
Lu, Y., Mahmoud, M. & Robinson, P. Estimating sheep pain stage utilizing facial motion unit detection. In: 2017 twelfth IEEE Worldwide convention on computerized face & gesture recognition (FG 2017), IEEE, pp. 394–399 (2017).
Evangelista, M. C., Monteiro, B. P. & Steagall, P. V. Measurement properties of grimace scales for pain assessment in nonhuman mammals: A scientific evaluation. Pain 163(6), 697–714 (2022).
Tomacheuski, R. M., Monteiro, B. P., Evangelista, M. C., Luna, S. P. L. & Steagall, P. V. Measurement properties of pain scoring devices in cattle: A scientific evaluation utilizing the cosmin guidelines. PLoS ONE 18(1), 0280830 (2023).