Categories
News

Prediction of pulmonary embolism by an explainable machine learning approach in the real world


  • Di Nisio, M., van Es, N. & Büller, H. R. Deep vein thrombosis and pulmonary embolism. Lancet. 388(10063), 3060–3073 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Rali, P. M. & Criner, G. J. Submassive pulmonary embolism. Am. J. Respir Crit. Care Med. 198(5), 588–598 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Millington, S. J. et al. Excessive and intermediate threat pulmonary embolism in the ICU. Intensive Care Med. 50(2), 195–208 (2024).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Righini, M., Robert-Ebadi, H. & Le Gal, G. Analysis of acute pulmonary embolism. J. Thromb. Haemost. 15(7), 1251–1261 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yazıcı, S. et al. Relation of distinction nephropathy to adversarial occasions in pulmonary emboli sufferers identified with distinction CT. Am. J. Emerg. Med. 34(7), 1247–1250 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Williams, L. S., Walker, G. R., Loewenherz, J. W. & Gidel, L. T. Affiliation of distinction and acute kidney damage in the critically in poor health: a propensity-matched examine. Chest. 157(4), 866–876 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Matheny, M. E., Whicher, D. & Thadaney Israni, S. Synthetic intelligence in well being care: a report from the nationwide academy of medication. JAMA 323(6), 509–510 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Nguyen, G. & Dlugolinsky, S. Machine learning and deep learning frameworks and libraries for large-scale information mining: a survey. Artif. Intell. Rev. 52, 77–124 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Handelman, G. S. et al. eDoctor: machine learning and the future of medication. J. Intern. Med. 284(6), 603–619 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ngiam, Okay. Y. & Khor, I. W. Large information and machine learning algorithms for health-care supply. Lancet Oncol. 20(5), e262–e273 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Haug, C. J. & Drazen, J. M. Synthetic intelligence and machine learning in scientific medication, 2023. N Engl. J. Med. 388(13), 1201–1208 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Yang, X. et al. Predicting the 10-Yr dangers of atherosclerotic heart problems in Chinese language inhabitants: the China-PAR Venture (Prediction for ASCVD Danger in China). Circulation. 134(19), 1430–1440 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, W. et al. Analysis of acute pulmonary embolism and clot burden on CTPA with deep learning. Eur. Radiol. 30(6), 3567–3575 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ma, X. et al. A multitask deep learning approach for pulmonary embolism detection and identification. Sci. Rep. 12(1), 13087 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunsaker, A. R. Deep learning and threat evaluation in acute pulmonary embolism. Radiology 302(1), 185–186 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ma, M. et al. Predicting the molecular subtype of breast most cancers and figuring out interpretable imaging options utilizing machine learning algorithms. Eur. Radiol. 32(3), 1652–1662 (2022).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Freund, Y., Cohen-Aubart, F. & Bloom, B. Acute pulmonary embolism: a overview. JAMA. 328(13), 1336–1345 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Konstantinides, S. V. et al. 2019 ESC pointers for the prognosis and administration of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Coronary heart J. 41(4), 543–603 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Barco, S. et al. Age-sex particular pulmonary embolism-related mortality in the USA and Canada, 2000-18: an evaluation of the WHO mortality database and of the CDC a number of trigger of loss of life database. Lancet Respir Med. 9(1), 33–42 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Peris, M. et al. Medical traits and 3-month outcomes in most cancers sufferers with incidental versus clinically suspected and confirmed pulmonary embolism. Eur. Respir J. 58(1), 2002723 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Motamedi, F. et al. Accelerating large information evaluation by means of LASSO-random forest algorithm in QSAR research. Bioinformatics 38(2), 469–475 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Tseng, P. Y. et al. Prediction of the improvement of acute kidney damage following cardiac surgical procedure by machine learning. Crit. Care 24(1), 478 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Qiao, N. et al. Machine learning prediction of venous thromboembolism after surgical procedures of main sellar area tumors. Thromb. Res. 226, 1–8 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, G. et al. Machine learning-based fashions for predicting mortality and acute kidney damage in crucial pulmonary embolism. BMC Cardiovasc. Disord. 23(1), 385 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kearon, C. et al. Analysis of pulmonary embolism with d-dimer adjusted to scientific likelihood. N Engl. J. Med. 381(22), 2125–2134 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Klok, F. A. et al. Incidence of thrombotic issues in critically in poor health ICU sufferers with COVID-19. Thromb. Res. 191, 145–147 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Alba, G. A. et al. NEDD9 is a novel and modifiable mediator of platelet-endothelial adhesion in the pulmonary circulation. Am. J. Respir Crit. Care Med. 203(12), 1533–1545 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Özcan, S. et al. The prognostic worth of C-reactive protein/albumin ratio in acute pulmonary embolism. Rev. Make investments. Clin. 74(2), 097–103 (2022).

    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, Q., Xiong, X. Y. & Liang, Z. A. Creating a nomogram-based scoring device to estimate the threat of pulmonary embolism. Int. J. Gen. Med. 15, 3687–3697 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bonaca, M. P. et al. Low-density lipoprotein ldl cholesterol decreasing with evolocumab and outcomes in sufferers with peripheral artery illness: insights from the FOURIER Trial (additional cardiovascular outcomes analysis with PCSK9 inhibition in topics with elevated threat). Circulation. 137(4), 338–350 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hanff, T. C. et al. Thrombosis in COVID-19. Am. J. Hematol. 95(12), 1578–1589 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lavatory, J., Spittle, D. A. & Newnham, M. COVID-19, immunothrombosis and venous thromboembolism: organic mechanisms. Thorax. 76(4), 412–420 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Poor, H. D. Pulmonary thrombosis and thromboembolism in COVID-19. Chest. 160(4), 1471–1480 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Righini, M. et al. Age-adjusted D-dimer cutoff ranges to rule out pulmonary embolism: the ADJUST-PE examine. JAMA 311(11), 1117–1124 (2014).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Suh, Y. J. et al. Pulmonary embolism and deep vein thrombosis in COVID-19: a scientific overview and meta-analysis. Radiology 298(2), E70–E80 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Medson, Okay. et al. Evaluating ‘scientific hunch’ towards scientific determination help programs (PERC rule, wells rating, revised Geneva rating and YEARS standards) in the prognosis of acute pulmonary embolism. BMC Pulm Med. 22(1), 432 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirsch, B. et al. Wells rating to foretell pulmonary embolism in sufferers with coronavirus illness 2019. Am. J. Med. 134(5), 688–690 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Stals, M. A. M. et al. Security and effectivity of diagnostic methods for ruling out pulmonary embolism in clinically related affected person subgroups: a scientific overview and individual-patient information meta-analysis. Ann. Intern. Med. 175(2), 244–255 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • An, C. et al. Radiomics machine learning examine with a small pattern dimension: single random training-test set break up might result in unreliable outcomes. PLoS One 16(8), e0256152 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vrudhula, A. et al. Machine learning and bias in medical imaging: alternatives and challenges. Circ Cardiovasc Imaging. 17(2), e015495. (2024).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • McCabe, B. E. et al. Past pulmonary embolism; nonthrombotic pulmonary embolism as diagnostic challenges. Curr. Probl. Diagn. Radiol. 48(4), 387–392 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Asah, D. et al. Nonthrombotic pulmonary embolism from inorganic particulate matter and international our bodies. Chest 153(5), 1249–1265 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Daidone, M., Ferrantelli, S. & Tuttolomondo, A. Machine learning purposes in stroke medication: developments, challenges, and future prospectives. Neural Regen Res. 19(4), 769–773 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • O’Reilly-Shah, V. N. et al. Bias and moral issues in machine learning and the automation of perioperative threat evaluation. Br. J. Anaesth. 125(6), 843–846 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *