Categories
News

Integrating artificial intelligence with mechanistic epidemiological modeling: a scoping review of opportunities and challenges


  • Kermack, W. O., McKendrick, A. G. & Walker, G. T. A contribution to the mathematical concept of epidemics. Proc. R. Soc. Lond. Ser. A, Containing Pap. A Math. Phys. Character 115, 700–721 (1997).

    ADS 
    MATH 

    Google Scholar
     

  • Riley, S. Giant-scale spatial-transmission fashions of infectious illness. Science 316, 1298–1301 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Grassly, N. C. & Fraser, C. Mathematical fashions of infectious illness transmission. Nat. Rev. Microbiol. 6, 477–487 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Heesterbeek, H. et al. Modeling infectious illness dynamics within the advanced panorama of world well being. Science 347, aaa4339 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Becker, A. D. et al. Growth and dissemination of infectious illness dynamic transmission fashions throughout the COVID-19 pandemic: what can we study from different pathogens and how can we transfer ahead? Lancet Digital Well being 3, e41–e50 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bedford, T. et al. World circulation patterns of seasonal influenza viruses fluctuate with antigenic drift. Nature 523, 217–220 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Moghadas, S. M. et al. Projecting hospital utilization throughout the COVID-19 outbreaks in the US. Proc. Natl Acad. Sci. USA 117, 9122–9126 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ye, Y. et al. Equitable entry to COVID-19 vaccines makes a life-saving distinction to all international locations. Nat. Hum. Behav. 6, 207–216 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Eames, Ok. T. D. & Keeling, M. J. Modeling dynamic and community heterogeneities within the unfold of sexually transmitted illnesses. Proc. Natl Acad. Sci. USA 99, 13330–13335 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Marshall, B. D. L. et al. Potential effectiveness of long-acting injectable pre-exposure prophylaxis for HIV prevention in males who’ve intercourse with males: a modelling examine. Lancet HIV 5, e498–e505 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Caldwell, J. M. et al. Local weather predicts geographic and temporal variation in mosquito-borne illness dynamics on two continents. Nat. Commun. 12, 1233 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Thompson, H. A. et al. Seasonal use case for the RTS,S/AS01 malaria vaccine: a mathematical modelling examine. Lancet Glob. Well being 10, e1782–e1792 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holmdahl, I. & Buckee, C. Fallacious however helpful – what covid-19 epidemiologic fashions can and can not inform us. N. Engl. J. Med. 383, 303–305 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, Y. et al. Higher modelling of infectious illnesses: classes from covid-19 in China. BMJ 375, n2365 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Budd, J. et al. Digital applied sciences within the public-health response to COVID-19. Nat. Med. 26, 1183–1192 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Whitelaw, S., Mamas, M. A., Topol, E. & Van Spall, H. G. C. Functions of digital expertise in COVID-19 pandemic planning and response. Lancet Digit Well being 2, e435–e440 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pandit, J. A., Radin, J. M., Quer, G. & Topol, E. J. Smartphone apps within the COVID-19 pandemic. Nat. Biotechnol. 40, 1013–1022 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q., Gao, J., Wu, J. T., Cao, Z. & Dajun Zeng, D. Information science approaches to confronting the COVID-19 pandemic: a narrative review. Philos. Trans. A Math. Phys. Eng. Sci. 380, 20210127 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Buckee, C. Enhancing epidemic surveillance and response: huge information is useless, lengthy stay huge information. Lancet Digit Well being 2, e218–e220 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Prasad, P. V. et al. Multimodeling method to evaluating the efficacy of layering pharmaceutical and nonpharmaceutical interventions for influenza pandemics. Proc. Natl Acad. Sci. USA 120, e2300590120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pangallo, M. et al. The unequal results of the well being–financial system trade-off throughout the COVID-19 pandemic. Nat. Hum. Behav. 8, 264–275 (2024).

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep studying. Nature 521, 436–444 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jordan, M. I. & Mitchell, T. M. Machine studying: Tendencies, views, and prospects. Science 349, 255–260 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hirschberg, J. & Manning, C. D. Advances in pure language processing. Science 349, 261–266 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Davies, A. et al. Advancing arithmetic by guiding human instinct with AI. Nature 600, 70–74 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yu, Ok.-H., Beam, A. L. & Kohane, I. S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2, 719–731 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C. & Faisal, A. A. The Artificial Intelligence Clinician learns optimum therapy methods for sepsis in intensive care. Nat. Med. 24, 1716–1720 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. AI in well being and medication. N.@nat.,Com. 28, 31–38 (2022).

    CAS 
    MATH 

    Google Scholar
     

  • Adebamowo, C. A. et al. The promise of information science for well being analysis in Africa. Nat. Commun. 14, 6084 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ghamizi, S. et al. Information-driven Simulation and Optimization for Covid-19 Exit Methods. in Proceedings of the twenty sixth ACM SIGKDD Worldwide Convention on Information Discovery & Information Mining 3434–3442 (Affiliation for Computing Equipment, New York, NY, USA, 2020).

  • Kharazmi, E. et al. Identifiability and predictability of integer- and fractional-order epidemiological fashions utilizing physics-informed neural networks. Nat. Computational Sci. 1, 744–753 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Vilar, J. M. G. & Saiz, L. Dynamics-informed deconvolutional neural networks for super-resolution identification of regime modifications in epidemiological time sequence. Sci. Adv. 9, eadf0673 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yao, Y., Zhou, H., Cao, Z., Zeng, D. D. & Zhang, Q. Optimum adaptive nonpharmaceutical interventions to mitigate the outbreak of respiratory infections following the COVID-19 pandemic: a deep reinforcement studying examine in Hong Kong, China. J. Am. Med. Inform. Assoc. 30, 1543–1551 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapoor, A. et al. Inspecting COVID-19 forecasting utilizing spatio-temporal Graph Neural Networks. arXiv [cs.LG] (2020).

  • Gao, J. et al. Proof-driven spatiotemporal COVID-19 hospitalization prediction with Ising dynamics. Nat. Commun. 14, 3093 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Panagopoulos, G., Nikolentzos, G. & Vazirgiannis, M. Switch graph neural networks for pandemic forecasting. Proc. Conf. AAAI Artif. Intell. 35, 4838–4845 (2021).

    MATH 

    Google Scholar
     

  • Rodríguez, A. et al. Machine studying for data-centric epidemic forecasting. Nat. Mach. Intell. 6, 1122–1131 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Andersson, H. & Britton, T. Stochastic Epidemic Fashions and Their Statistical Evaluation. (Springer, New York, NY, 2000).

  • Ionides, E. L., Bretó, C. & King, A. A. Inference for nonlinear dynamical techniques. Proc. Natl Acad. Sci. USA 103, 18438–18443 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Farah, M., Birrell, P., Conti, S. & Angelis, D. D. Bayesian emulation and calibration of a dynamic epidemic mannequin for A/H1N1 influenza. J. Am. Stat. Assoc. 109, 1398–1411 (2014).

    Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Syrowatka, A. et al. Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to establish key use circumstances. NPJ Digit. Med. 4, 96 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alfred, R. & Obit, J. H. The roles of machine studying strategies in limiting the unfold of lethal illnesses: A scientific review. Heliyon 7, e07371 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Syeda, H. B. et al. Position of Machine Studying Strategies to Deal with the COVID-19 Disaster: Systematic Review. JMIR Med. Inf. 9, e23811 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Adly, A. S., Adly, A. S. & Adly, M. S. Approaches Based mostly on Artificial Intelligence and the Web of Clever Issues to Forestall the Unfold of COVID-19: Scoping Review. J. Med. Web Res. 22, e19104 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Brownstein, J. S., Rader, B., Astley, C. M. & Tian, H. Advances in Artificial Intelligence for Infectious-Illness Surveillance. N. Engl. J. Med. 388, 1597–1607 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pley, C., Evans, M., Lowe, R., Montgomery, H. & Yacoub, S. Digital and technological innovation in vector-borne illness surveillance to foretell, detect, and management climate-driven outbreaks. Lancet Planet Well being 5, e739–e745 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Xiang, Y. et al. Software of artificial intelligence and machine studying for HIV prevention interventions. Lancet HIV 9, e54–e62 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Poirier, C. et al. Actual-time forecasting of the COVID-19 outbreak in Chinese language provinces: Machine studying method utilizing novel digital information and estimates from mechanistic fashions. J. Med. Web Res. 22, e20285 (2020).

  • Fan, X.-R., Zuo, J., He, W.-T. & Liu, W. Stacking based mostly prediction of COVID-19 Pandemic by integrating infectious illness dynamics mannequin and conventional machine studying. In Proceedings of the 2022 fifth Worldwide Convention on Massive Information and Web of Issues 20–26 (Affiliation for Computing Equipment, New York, NY, USA, 2022).

  • Garner, M. G. et al. Early Choice Indicators for Foot-and-Mouth Illness Outbreaks in Non-Endemic International locations. Entrance Vet. Sci. 3, 109 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kondapalli, A. R., Koganti, H., Challagundla, S. Ok., Guntaka, C. S. R. & Biswas, S. Machine studying predictions of COVID-19 second wave end-times in Indian states. Indian J. Phys. Proc. Indian Assoc. Cultiv Sci. (2004) 96, 2547–2555 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Kandula, S. et al. Analysis of mechanistic and statistical strategies in forecasting influenza-like sickness. J. R. Soc. Interface 15, 20180174 (2018).

  • Adiga, A. et al. All Fashions Are Helpful: Bayesian Ensembling for Sturdy Excessive Decision COVID-19 Forecasting. In Proceedings of the twenty seventh ACM SIGKDD Convention on Information Discovery and Information Mining (dl.acm.org, https://doi.org/10.1101/2021.03.12.21253495. 2021).

  • Nadler, P., Arcucci, R. & Guo, Y. A Neural SIR Mannequin for World Forecasting. In Proceedings of the Machine Studying for Well being NeurIPS Workshop, in Proceedings of Machine Studying Analysis. Vol. 136, 254–266 (PMLR, 2020). Out there from https://proceedings.mlr.press/v136/nadler20a.html.

  • Maniamfu, P. & Kameyama, Ok. LSTM-based Forecasting utilizing Coverage Stringency and Time-varying Parameters of the SIR Mannequin for COVID-19. In 2023 nineteenth IEEE Worldwide Colloquium on Sign Processing & Its Functions (CSPA) 111–116 (IEEE, 2023).

  • Adiga, A. et al. Enhancing COVID-19 Ensemble Forecasting Mannequin Efficiency Utilizing Auxiliary Information Sources. In 2022 IEEE Worldwide Convention on Massive Information (Massive Information) 1594–1603 (IEEE, Osaka, Japan, 2022). https://doi.org/10.1109/BigData55660.2022.10020579.

  • Delli Compagni, R., Cheng, Z., Russo, S. & Van Boeckel, T. P. A hybrid Neural Community-SEIR mannequin for forecasting intensive care occupancy in Switzerland throughout COVID-19 epidemics. PLoS One 17, e0263789 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barmparis, G. D. & Tsironis, G. P. Physics‐knowledgeable machine studying for the COVID‐19 pandemic: Adherence to social distancing and quick‐time period predictions for eight international locations. Quant. Biol. 10, 139–149 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • De Rosa, M., Giampaolo, F., Piccialli, F. & Cuomo, S. Modelling the COVID-19 an infection charge via a Physics-Knowledgeable studying method. In 2023 thirty first Euromicro Worldwide Convention on Parallel, Distributed and Community-Based mostly Processing (PDP) 212–218 (IEEE, 2023).

  • Torku, T., Khaliq, A. & Rihan, F. SEINN: A deep studying algorithm for the stochastic epidemic mannequin. Math. Biosci. Eng. 20, 16330–16361 (2023).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Berkhahn, S. & Ehrhardt, M. A physics-informed neural community to mannequin COVID-19 an infection and hospitalization eventualities. Adv. Contin. Discret Mannequin 2022, 61 (2022).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rodríguez, A., Cui, J., Ramakrishnan, N., Adhikari, B. & Aditya Prakash, B. EINNs: Epidemiologically-Knowledgeable Neural Networks. AAAI 37, 14453–14460 (2023).

    Article 

    Google Scholar
     

  • Shaier, S., Raissi, M. & Seshaiyer, P. Information-driven approaches for predicting unfold of infectious illnesses via DINNs: Illness Knowledgeable Neural Networks. Lett. Biomath. 9, 71–105 (2022).

  • Bertaglia, G., Lu, C., Pareschi, L. & Zhu, X. Asymptotic-Preserving Neural Networks for multiscale hyperbolic fashions of epidemic unfold. Math. Fashions Strategies Appl. Sci. 32, 1949–1985 (2022).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Malinzi, J., Gwebu, S. & Motsa, S. Figuring out COVID-19 Dynamics Utilizing Physics Knowledgeable Neural Networks. Axioms 11, 121 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Liu, P., Han, Q. & Yang, X. Rolling Iterative Prediction for Correlated Multivariate Time Sequence. In Information Science 433–452 (Springer Nature Singapore, 2023).

  • Otadi, M. & Mosleh, M. Common approximation technique for the answer of integral equations. Math. Sci. 11, 181–187 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Liu, M., Liu, Y. & Liu, J. Epidemiology-aware Deep Studying for Infectious Illness Dynamics Prediction. In Proceedings of the thirty second ACM Worldwide Convention on Info and Information Administration 4084–4088 (Affiliation for Computing Equipment, New York, NY, USA, 2023).

  • Cao, Q. et al. MepoGNN: Metapopulation Epidemic Forecasting with Graph Neural Networks. In Machine Studying and Information Discovery in Databases 453–468 (Springer Nature Switzerland, 2023).

  • Solar, C., Kumarasamy, V. Ok., Liang, Y., Wu, D. & Wang, Y. Utilizing a Layered Ensemble of Physics-Guided Graph Consideration Networks to Predict COVID-19 Tendencies. Appl. Artif. Intell. 36, 2055989 (2022).

    Article 

    Google Scholar
     

  • Gao, J. et al. STAN: spatio-temporal consideration community for pandemic prediction utilizing real-world proof. J. Am. Med. Inform. Assoc. 28, 733–743 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zheng, Y., Li, Z., Xin, J. & Zhou, G. A spatial-temporal graph based mostly hybrid infectious illness mannequin with software to COVID-19. Int Conf Sample Recognit Appl. Technique abs/2010.09077, (2020).

  • Ma, J. et al. Enhancing On-line Epidemic Supervising System by Compartmental and GRU Fusion Mannequin. Cellular Info Methods 2022, 3303854 (2022).

  • Wang, L. et al. CausalGNN: Causal-Based mostly Graph Neural Networks for Spatio-Temporal Epidemic Forecasting. AAAI 36, 12191–12199 (2022).

    Article 

    Google Scholar
     

  • Nguyen, C. et al. BeCaked+: An Explainable AI Mannequin to Forecast Delta-Spreading Covid-19 Conditions for Ho Chi Minh Metropolis. In Proceedings of the ICR’22 Worldwide Convention on Improvements in Computing Analysis 53–64 (Springer Worldwide Publishing, 2022).

  • Nguyen, D. Q. et al. BeCaked: An Explainable Artificial Intelligence Mannequin for COVID-19 Forecasting. Sci. Rep. 12, 7969 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, L., Chen, J. & Marathe, M. TDEFSI: Concept-guided Deep Studying-based Epidemic Forecasting with Artificial Info. ACM Trans. Spat. Algorithms Syst. 6, 1–39 (2020).

    MATH 

    Google Scholar
     

  • Zhan, C., Wu, Z., Wen, Q., Gao, Y. & Zhang, H. Optimizing Broad Studying System Hyper-parameters via Particle Swarm Optimization for Predicting COVID-19 in 184 International locations. In 2020 IEEE Worldwide Convention on E-health Networking, Software & Providers (HEALTHCOM) 1–6 (IEEE, 2021).

  • Wang, D., Zhang, S. & Wang, L. Deep Epidemiological Modeling by Black-box Information Distillation: An Correct Deep Studying Mannequin for COVID-19. AAAI 35, 15424–15430 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Bogacsovics, G. et al. Changing the SIR epidemic mannequin with a neural community and coaching it additional to extend prediction accuracy. Ann. Math. Inform. 53, 73–91 (2021).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Wang, H. et al. Predicting the Epidemics Pattern of COVID-19 Utilizing Epidemiological-Based mostly Generative Adversarial Networks. IEEE J. Sel. Prime. Sign Course of. 16, 276–288 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Murphy, C., Laurence, E. & Allard, A. Deep studying of contagion dynamics on advanced networks. Nat. Commun. 12, 4720 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, T. & Li, J. Understanding and predicting the spatio-temporal unfold of COVID-19 through integrating diffusive graph embedding and compartmental fashions. Trans. GIS 25, 3025–3047 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Quilodrán-Casas, C. et al. Digital twins based mostly on bidirectional LSTM and GAN for modelling the COVID-19 pandemic. Neurocomputing 470, 11–28 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Silva, V. L. S., Heaney, C. E., Li, Y. & Ache, C. C. Information Assimilation Predictive GAN (DA-PredGAN) Utilized to a Spatio-Temporal Compartmental Mannequin in Epidemiology. J. Sci. Comput. 94, 25 (2023).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Bhouri, M. A. et al. COVID-19 dynamics throughout the US: A deep studying examine of human mobility and social habits. Comput. Strategies Appl. Mech. Eng. 382, 113891 (2021).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Wang, H. et al. Neural-SEIR: A versatile data-driven framework for exact prediction of epidemic illness. Math. Biosci. Eng. 20, 16807–16823 (2023).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Chopra, A. et al. Differentiable Agent-based Epidemiology. In Proceedings of the 2023 Worldwide Convention on Autonomous Brokers and Multiagent Methods (AAMAS ’23). 1848–1857 (Worldwide Basis for Autonomous Brokers and Multiagent Methods, Richland, SC, 2023).

  • Yang, Y., Kiyavash, N., Tune, L. & He, N. The satan is within the element: A framework for macroscopic prediction through microscopic fashions. Adv. Neural Inf. Course of. Syst. 33, 8006–8016 (2020).

  • Amaral, F., Casaca, W., Oishi, C. M. & Cuminato, J. A. In the direction of Offering Efficient Information-Pushed Responses to Predict the Covid-19 in São Paulo and Brazil. Sensors 21, 540 (2021).

  • He, Z. & Cai, Z. Quantifying the Impact of Quarantine Management and Optimizing its Price in COVID-19 Pandemic. IEEE/ACM Trans. Comput. Biol. Bioinform. PP, 1–11.

  • Yin, S., Wu, J. & Tune, P. Optimum management by deep studying methods and its functions on epidemic fashions. J. Math. Biol. 86, 36 (2023).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Arık, S. Ö. et al. A potential analysis of AI-augmented epidemiology to forecast COVID-19 within the USA and Japan. NPJ Digit Med. 4, 146 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Petrica, M. & Popescu, I. Inverse downside for parameters identification in a modified SIRD epidemic mannequin utilizing ensemble neural networks. BioData Min. 16, 22 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liu, X., Wang, W., Hou, B. & Feng, N. Prediction of Lively Circumstances of COVID-19 Based mostly on small-scale-KNN-LSTM. In 2023 thirty fifth Chinese language Management and Choice Convention (CCDC) 2031–2036 (IEEE, 2023).

  • Rahnsch, B. & Taghizadeh, L. Community-based uncertainty quantification for mathematical fashions in epidemiology. J. Theor. Biol. 577, 111671 (2024).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Kumar, N. & Susan, S. Epidemic Modeling utilizing Hybrid of Time-varying SIRD, Particle Swarm Optimization, and Deep Studying. In 2023 14th Worldwide Convention on Computing Communication and Networking Applied sciences (ICCCNT) 1–7 (IEEE, 2023).

  • Ji, J. et al. Local weather-dependent effectiveness of nonpharmaceutical interventions on COVID-19 mitigation. Math. Biosci. 366, 109087 (2023).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Vega, R., Flores, L. & Greiner, R. SIMLR: Machine Studying contained in the SIR Mannequin for COVID-19 Forecasting. Forecasting 4, 72–94 (2022).

    Article 

    Google Scholar
     

  • Chen, Y., Liu, J. & Yu, B. COVID-19 Pattern Prediction Utilizing CLS-Web Hybrid Mannequin. In 2023 twelfth Worldwide Convention of Info and Communication Know-how (ICTech) 277–282 (IEEE, 2023).

  • Alsmadi, M. et al. Vulnerable uncovered infectious recovered-machine studying for COVID-19 prediction in Saudi Arabia. Int. J. Electr. Comput. Eng. (IJECE) https://doi.org/10.11591/ijece.v13i4.pp4761-4776 (2023).

  • Qiu, Y. et al. Prediction and Evaluation of Infectious Illnesses Based mostly on M-SIR Mannequin. In 2022 fifth Worldwide Convention on Sample Recognition and Artificial Intelligence (PRAI) 225–234 (IEEE, 2022).

  • Mu, C., Teo, J. & Cheong, J. Modelling Singapore’s Covid-19 Pandemic Utilizing SEIRQV and Hybrid Epidemiological Fashions. In IRC-SET 2022 559–575 (Springer Nature Singapore, 2023).

  • Wang, L. et al. Machine studying spatio-temporal epidemiological mannequin to judge Germany-county-level COVID-19 threat. Mach. Study.: Sci. Technol. 2, 035031 (2021).


    Google Scholar
     

  • Wu, W. Pc clever prediction technique of COVID-19 based mostly on improved SEIR mannequin and machine studying. In 2022 IEEE 2nd Worldwide Convention on Energy, Electronics and Pc Functions (ICPECA) 934–938 (IEEE, 2022).

  • Yao, S. Evaluation on the anti-epidemic measures: Mathematical mannequin institution for COVID-19 epidemic and software of recurrent neural community. In 2022 seventh Worldwide Convention on Clever Computing and Sign Processing (ICSP) 1584–1590 (IEEE, 2022).

  • Zhang, G. & Liu, X. Prediction and management of COVID-19 spreading based mostly on a hybrid clever mannequin. PLoS One 16, e0246360 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wyss, A. & Hidalgo, A. Modeling COVID-19 Utilizing a Modified SVIR Compartmental Mannequin and LSTM-Estimated Parameters. Arithmetic 11, 1436 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Gadewadikar, J. & Marshall, J. A technique for parameter estimation in system dynamics fashions utilizing artificial intelligence. Syst. Eng. 27, 253–266 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Zisad, S. N., Hossain, M. S., Hossain, M. S. & Andersson, Ok. An Built-in Neural Community and SEIR Mannequin to Predict COVID-19. Algorithms 14, 94 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Merkelbach, Ok. et al. HybridML: Open supply platform for hybrid modeling. Comput. Chem. Eng. 160, 107736 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Muñoz, L. et al. A hybrid system for pandemic evolution prediction. ADCAIJ 11, 111–128 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Castillo Ossa, L. F. et al. A Hybrid Mannequin for COVID-19 Monitoring and Prediction. Electronics 10, 799 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Jiang, R. et al. Countrywide Origin-Vacation spot Matrix Prediction and Its Software for COVID-19. In Machine Studying and Information Discovery in Databases. Utilized Information Science Monitor 319–334 (Springer Worldwide Publishing, 2021).

  • Yasami, A., Beigi, A. & Yousefpour, A. Software of lengthy short-term reminiscence neural community and optimum management to variable-order fractional mannequin of HIV/AIDS. Eur. Phys. J. Spec. Prime. 231, 1875–1884 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Liao, Z. et al. SIRVD-DL: A COVID-19 deep studying prediction mannequin based mostly on time-dependent SIRVD. Comput. Biol. Med. 138, 104868 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zheng, N. et al. Predicting COVID-19 in China Utilizing Hybrid AI Mannequin. IEEE Trans. Cyber. 50, 2891–2904 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Watson, G. L. et al. Pandemic velocity: Forecasting COVID-19 within the US with a machine studying & Bayesian time sequence compartmental mannequin. PLoS Comput. Biol. 17, e1008837 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liu, X.-D. et al. Nesting the SIRV mannequin with NAR, LSTM and statistical strategies to suit and predict COVID-19 epidemic pattern in Africa. BMC Public Well being 23, 138 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, X., Wang, H., Ramazi, P., Nah, Ok. & Lewis, M. From Coverage to Prediction: Forecasting COVID-19 Dynamics Below Imperfect Vaccination. Bull. Math. Biol. 84, 90 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, X., Wang, H., Ramazi, P., Nah, Ok. & Lewis, M. A Speculation-Free Bridging of Illness Dynamics and Non-pharmaceutical Insurance policies. Bull. Math. Biol. 84, 57 (2022).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Deng, Q. Dynamics and Growth of the COVID-19 Epidemic in the US: A Compartmental Mannequin Enhanced With Deep Studying Strategies. J. Med. Web Res. 22, e21173 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J., Matsunami, Ok., Okamura, Ok., Badr, S. & Sugiyama, H. Willpower of important choice factors for COVID-19 measures in Japan. Sci. Rep. 11, 16416 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta, A. & Katarya, R. A deep-SIQRV epidemic mannequin for COVID-19 to entry the impression of prevention and management measures. Comput. Biol. Chem. 107, 107941 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bousquet, A., Conrad, W. H., Sadat, S. O., Vardanyan, N. & Hong, Y. Deep studying forecasting utilizing time-varying parameters of the SIRD mannequin for Covid-19. Sci. Rep. 12, 3030 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Feng, L., Chen, Z., Harold, A. L. Jr., Furati, Ok. & Khaliq, A. Information pushed time-varying SEIR-LSTM/GRU algorithms to trace the unfold of COVID-19. Math. Biosci. Eng. 19, 8935–8962 (2022).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Ding, Z., Sha, F., Zhang, Y. & Yang, Z. Biology-Knowledgeable Recurrent Neural Community for Pandemic Prediction Utilizing Multimodal Information. Biomimetics 8, 158 (2023).

  • Khan, J. I., Ullah, F. & Lee, S. Consideration based mostly parameter estimation and states forecasting of COVID-19 pandemic utilizing modified SIQRD Mannequin. Chaos Solitons Fractals 165, 112818 (2022).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kumaresan, M., Kumar, M. S. & Muthukumar, N. Evaluation of mobility based mostly COVID-19 epidemic mannequin utilizing Federated Multitask Studying. Math. Biosci. Eng. 19, 9983–10005 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lengthy, J., Khaliq, A. Q. M. & Furati, Ok. M. Identification and prediction of time-varying parameters of COVID-19 mannequin: a data-driven deep studying method. Int. J. Comput. Math. 98, 1617–1632 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Farooq, J. & Bazaz, M. A. A deep studying algorithm for modeling and forecasting of COVID-19 in 5 worst affected states of India. Alex. Eng. J. 60, 587–596 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Soemsap, T., Wongthanavasu, S. & Satimai, W. Forecasting quantity of dengue sufferers utilizing mobile automata mannequin. In 2014 Worldwide Electrical Engineering Congress (iEECON) 1–4 (IEEE, 2014).

  • Tuarob, S., Tucker, C. S., Salathe, M. & Ram, N. Modeling Particular person-Degree An infection Dynamics Utilizing Social Community Info. In Proceedings of the twenty fourth ACM Worldwide on Convention on Info and Information Administration 1501–1510 (Affiliation for Computing Equipment, New York, NY, USA, 2015).

  • Solares-Hernández, P. A., Garibo-i-Orts, Ò., Alberto Conejero, J. & Manzano, F. A. Adaptation of the COVASIM mannequin to include non-pharmaceutical interventions: Software to the Dominican Republic throughout the second wave of COVID-19. Appl. Math. Nonlin. Sci. 8, 2319–2332 (2023).

    MATH 

    Google Scholar
     

  • Rosato, C. et al. Extracting Self-Reported COVID-19 Symptom Tweets and Twitter Motion Mobility Origin/Vacation spot Matrices to Inform Illness Fashions. Info 14, 170 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Kandula, S., Pei, S. & Shaman, J. Improved forecasts of influenza-associated hospitalization charges with Google Search Tendencies. J. R. Soc. Interface 16, 20190080 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Reiker, T. et al. Emulator-based Bayesian optimization for environment friendly multi-objective calibration of an individual-based mannequin of malaria. Nat. Commun. 12, 7212 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jørgensen, A. C. S., Ghosh, A., Sturrock, M. & Shahrezaei, V. Environment friendly Bayesian inference for stochastic agent-based fashions. PLoS Comput. Biol. 18, e1009508 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kwok, W. M., Streftaris, G. & Dass, S. C. Laplace based mostly Bayesian inference for peculiar differential equation fashions utilizing regularized artificial neural networks. Stat. Comput. 33, 124 (2023).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Anirudh, R. et al. Correct Calibration of Agent-based Epidemiological Fashions with Neural Community Surrogates. In Proceedings of the first Workshop on Healthcare AI and COVID-19, ICML 2022 (eds. Xu, P. et al.) vol. 184 54–62 (PMLR, 2022).

  • Perumal, R. & van Zyl, T. L. Surrogate-assisted methods: the parameterisation of an infectious illness agent-based mannequin. Neural Comput. Appl. https://doi.org/10.1007/s00521-022-07476-y (2022).

  • Nsoesie, E. O., Beckman, R., Marathe, M. & Lewis, B. Prediction of an Epidemic Curve: A Supervised Classification Method. Stat. Commun. Infect. Dis. 3, 5 (2011).

  • Harrison, G. et al. Figuring out Difficult Contagion Eventualities from Cascade Information. In Proceedings of the twenty ninth ACM SIGKDD Convention on Information Discovery and Information Mining 4135–4145 (Affiliation for Computing Equipment, New York, NY, USA, 2023).

  • Augusta, C., Deardon, R. & Taylor, G. Deep studying for supervised classification of spatial epidemics. Spat. Spatiotemporal Epidemiol. 29, 187–198 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Pokharel, G. & Deardon, R. Supervised studying and prediction of spatial epidemics. Spat. Spatiotemporal Epidemiol. 11, 59–77 (2014).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Nsoesie, E. O., Leman, S. C. & Marathe, M. V. A Dirichlet course of mannequin for classifying and forecasting epidemic curves. BMC Infect. Dis. 14, 12 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Torku, T. Ok., Khaliq, A. Q. M. & Furati, Ok. M. Deep-Information-Pushed Neural Networks for COVID-19 Vaccine Efficacy. Epidemiologia (Basel) 2, 564–586 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ghosh, S., Ogueda-Oliva, A., Ghosh, A., Banerjee, M. & Seshaiyer, P. Understanding the implications of under-reporting, vaccine effectivity and social habits on the post-pandemic unfold utilizing physics knowledgeable neural networks: A case examine of China. PLoS One 18, e0290368 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cai, M., Em Karniadakis, G. & Li, C. Fractional SEIR mannequin and data-driven predictions of COVID-19 dynamics of Omicron variant. Chaos 32, 071101 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Oluwasakin, E. O. & Khaliq, A. Q. M. Information-Pushed Deep Studying Neural Networks for Predicting the Quantity of People Contaminated by COVID-19 Omicron Variant. Epidemiologia (Basel) 4, 420–453 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • He, M., Tang, S. & Xiao, Y. Combining the dynamic mannequin and deep neural networks to establish the depth of interventions throughout COVID-19 pandemic. PLoS Comput. Biol. 19, e1011535 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raissi, M., Ramezani, N. & Seshaiyer, P. On parameter estimation approaches for predicting illness transmission via optimization, deep studying and statistical inference strategies. Lett. Biomath. 6, 1–26 (2019).

  • Nguyen, L., Raissi, M. & Seshaiyer, P. Modeling, Evaluation and Physics Knowledgeable Neural Community approaches for learning the dynamics of COVID-19 involving human-human and human-pathogen interplay. Computational Math. Biophysics 10, 1–17 (2022).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Grimm, V., Heinlein, A., Klawonn, A., Lanser, M. & Weber, J. Estimating The Time-Dependent Contact Price Of Sir And Seir Fashions In Mathematical Epidemiology Utilizing Physics-Knowledgeable Neural Networks. Electron. Trans. Numer. Anal. 56, 1–27 (2022).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Jamiluddin, M. S., Mohd, M. H., Ahmad, N. A. & Musa, Ok. I. Situational evaluation for COVID-19: Estimating transmission dynamics in Malaysia utilizing an SIR-type mannequin with neural community method. Sains Malays. 50, 2469–2478 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Heldmann, F., Berkhahn, S., Ehrhardt, M. & Klamroth, Ok. PINN coaching utilizing biobjective optimization: The trade-off between information loss and residual loss. J. Comput. Phys. 488, 112211 (2023).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Schiassi, E., De Florio, M., D’Ambrosio, A., Mortari, D. & Furfaro, R. Physics-Knowledgeable Neural Networks and Practical Interpolation for Information-Pushed Parameters Discovery of Epidemiological Compartmental Fashions. Arithmetic 9, 2069 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Angeli, M., Neofotistos, G., Mattheakis, M. & Kaxiras, E. Modeling the impact of the vaccination marketing campaign on the COVID-19 pandemic. Chaos Solitons Fractals 154, 111621 (2022).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Ning, X., Li, X.-A., Wei, Y. & Chen, F. Euler iteration augmented physics-informed neural networks for time-varying parameter estimation of the epidemic compartmental mannequin. Entrance. Phys. 10, 1062554 (2022).

  • He, M., Tang, B., Xiao, Y. & Tang, S. Transmission dynamics knowledgeable neural community with software to COVID-19 infections. Comput. Biol. Med. 165, 107431 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Jung, S. Y., Jo, H., Son, H. & Hwang, H. J. Actual-World Implications of a Quickly Responsive COVID-19 Unfold Mannequin with Time-Dependent Parameters through Deep Studying: Mannequin Growth and Validation. J. Med. Web Res. 22, e19907 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ning, X., Guan, J., Li, X.-A., Wei, Y. & Chen, F. Physics-Knowledgeable Neural Networks Integrating Compartmental Mannequin for Analyzing COVID-19 Transmission Dynamics. Viruses 15, 1749 (2023).

  • Hu, H., Kennedy, C. M., Kevrekidis, P. G. & Zhang, H.-Ok. A Modified PINN Method for Identifiable Compartmental Fashions in Epidemiology with Software to COVID-19. Viruses 14, 2464 (2022).

  • Ning, X., Jia, L., Wei, Y., Li, X.-A. & Chen, F. Epi-DNNs: Epidemiological priors knowledgeable deep neural networks for modeling COVID-19 dynamics. Comput. Biol. Med. 158, 106693 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olumoyin, Ok. D., Khaliq, A. Q. M. & Furati, Ok. M. Information-Pushed Deep-Studying Algorithm for Asymptomatic COVID-19 Mannequin with Various Mitigation Measures and Transmission Price. Epidemiologia (Basel) 2, 471–489 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhao, L. et al. On-line flu epidemiological deep modeling on illness contact community. Geoinformatica 24, 443–475 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Salman, A. M., Ahmed, I., Mohd, M. H., Jamiluddin, M. S. & Dheyab, M. A. Situation evaluation of COVID-19 transmission dynamics in Malaysia with the chance of reinfection and restricted medical sources eventualities. Comput. Biol. Med. 133, 104372 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baldo, F., Iannello, M., Lombardi, M. & Milano, M. Knowledgeable Deep Studying for epidemics forecasting. PAIS 2022, 86–99 (2022).

    MATH 

    Google Scholar
     

  • Amaral, F., Casaca, W., Oishi, C. M. & Cuminato, J. A. Simulating Immunization Campaigns and Vaccine Safety In opposition to COVID-19 Pandemic in Brazil. IEEE Entry 9, 126011–126022 (2021).

    Article 

    Google Scholar
     

  • Gaskin, T., Pavliotis, G. A. & Girolami, M. Neural parameter calibration for large-scale multiagent fashions. Proc. Natl Acad. Sci. USA. 120, e2216415120 (2023).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahmadani, F. & Lee, H. Hybrid Deep Studying-Based mostly Epidemic Prediction Framework of COVID-19: South Korea Case. NATO Adv. Sci. Inst. Ser. E Appl. Sci. 10, 8539 (2020).

    CAS 
    MATH 

    Google Scholar
     

  • Tune, P. Division of Arithmetic and Statistics, Xi’an Jiaotong College, Xi’an Metropolis, 710049, China & Xiao, Y. Estimating time-varying copy quantity by deep studying methods. J. Appl. Anal. Comput. 12, 1077–1089 (2022).

    MathSciNet 
    MATH 

    Google Scholar
     

  • La Gatta, V., Moscato, V., Postiglione, M. & Sperli, G. An Epidemiological Neural Community Exploiting Dynamic Graph Structured Information Utilized to the COVID-19 Outbreak. IEEE Trans. Massive Information 7, 45–55 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Li, C., Zhou, C., Liu, J. & Rong, Y. Software of neural-network hybrid fashions in estimating the an infection features of nonlinear epidemic fashions. Int. J. Biomath. 17, 2350056 (2024).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Dandekar, R., Rackauckas, C. & Barbastathis, G. A Machine Studying-Aided World Diagnostic and Comparative Instrument to Assess Impact of Quarantine Management in COVID-19 Unfold. Patterns (N. Y) 1, 100145 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dandekar, R., Wang, E., Barbastathis, G. & Rackauckas, C. Implications of Delayed Reopening in Controlling the COVID-19 Surge in Southern and West-Central USA. Well being Information Sci. 2021, 9798302 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alauddin, M. et al. How can course of security and a threat administration method information pandemic threat administration? J. Loss Prev. Course of Indust. 68, 104310 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Badfar, E., Zaferani, E. J. & Nikoofard, A. Design a strong sliding mode controller based mostly on the state and parameter estimation for the nonlinear epidemiological mannequin of Covid-19. Nonlinear Dyn. 109, 5–18 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Arnst, M. et al. A hybrid stochastic mannequin and its Bayesian identification for infectious illness screening in a college campus with software to huge COVID-19 screening on the College of Liège. Math. Biosci. 347, 108805 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ryder, T., Golightly, A., McGough, A. S. & Prangle, D. Black-Field Variational Inference for Stochastic Differential Equations. In Proceedings of the thirty fifth Worldwide Convention on Machine Studying (eds. Dy, J. & Krause, A.) vol. 80 4423–4432 (PMLR, 10–15 Jul 2018).

  • Radev, S. T. et al. OutbreakFlow: Mannequin-based Bayesian inference of illness outbreak dynamics with invertible neural networks and its software to the COVID-19 pandemics in Germany. PLoS Comput. Biol. 17, e1009472 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Saulnier, E., Gascuel, O. & Alizon, S. Inferring epidemiological parameters from phylogenies utilizing regression-ABC: A comparative examine. PLoS Comput. Biol. 13, e1005416 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cranmer, Ok., Brehmer, J. & Louppe, G. The frontier of simulation-based inference. Proc. Natl Acad. Sci. USA. 117, 30055–30062 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Thiagarajan, J. J. et al. Machine Studying-Powered Mitigation Coverage Optimization in Epidemiological Fashions. In Proceedings of the first Workshop on Healthcare AI and COVID-19, ICML 2022 (eds. Xu, P. et al.) vol. 184 63–72 (PMLR, 2022).

  • Jian, Z.-D., Chang, H.-J., Hsu, T.-S. & Wang, D.-W. Making use of Deep Studying for Surrogate Development of Simulation Methods. In Simulation and Modeling Methodologies, Applied sciences and Functions 335–350 (Springer Worldwide Publishing, 2019).

  • Xiao, S. & Liu, R. Research of covid-19 outbreak management utilizing agent-based modeling. Complicated Methods 297–321 (2021).

  • Valtchev, S. Z. et al. Managing SARS-CoV-2 Testing in Faculties with an Artificial Intelligence Mannequin and Software Developed by Simulation Information. Electronics 10, 1626 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Malloy, G. S. P. & Brandeau, M. L. When Is Mass Prophylaxis Price-Efficient for Epidemic Management? A Comparability of Choice Approaches. Med. Decis. Mak. 42, 1052–1063 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Solar, H., Koo, J., Dickens, B. L., Clapham, H. E. & Prepare dinner, A. R. Quick-term and long-term epidemiological impacts of sustained vector management in numerous dengue endemic settings: A modelling examine. PLoS Comput. Biol. 18, e1009979 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zang, X. et al. Prioritizing Extra Information Assortment to Scale back Choice Uncertainty within the HIV/AIDS Response in 6 US Cities: A Worth of Info Evaluation. Worth Well being 23, 1534–1542 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bertsimas, D. et al. From predictions to prescriptions: An information-driven response to COVID-19. Well being Care Manag. Sci. 24, 253–272 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Janko, V. et al. Optimizing non-pharmaceutical intervention methods in opposition to COVID-19 utilizing artificial intelligence. Entrance Public Well being 11, 1073581 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. W. et al. Evaluation of the Advantages of Focused Interventions for Pandemic Management in China Based mostly on Machine Studying Technique and Net Service for COVID-19 Coverage Simulation. Biomed. Environ. Sci. 35, 412–418 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bertozzi-Villa, A. et al. An archetypes method to malaria intervention impression mapping: a new framework and instance software. Malar. J. 22, 138 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aurell, A., Carmona, R., Dayanıklı, G. & Laurière, M. Finite State Graphon Video games with Functions to Epidemics. Dyn. Video games Appl. 12, 49–81 (2022).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Xuan, Y., Balkin, R., Han, J., Hu, R. & Ceniceros, H. D. Optimum Insurance policies for a Pandemic: A Stochastic Sport Method and a Deep Studying Algorithm. In Proceedings of the 2nd Mathematical and Scientific Machine Studying Convention (eds. Bruna, J., Hesthaven, J. & Zdeborova, L.) vol. 145 987–1012 (PMLR, 16–19 Aug 2022).

  • Aurell, A., Carmona, R., Dayanikli, G. & Laurière, M. Optimum Incentives to Mitigate Epidemics: A Stackelberg Imply Subject Sport Method. SIAM J. Management Optim. 60, S294–S322 (2022).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Zou, L., Xia, L., Hou, L., Zhao, X. & Yin, D. Information-efficient reinforcement studying for malaria management. Int Jt Conf Artif Intell abs/2105.01620, (2021).

  • Vereshchaka, A. & Kulkarni, N. Optimization of Mitigation Methods Throughout Epidemics Utilizing Offline Reinforcement Studying. in Social, Cultural, and Behavioral Modeling 35–45 (Springer Worldwide Publishing, 2021).

  • Tune, S., Zong, Z., Li, Y., Liu, X. & Yu, Y. Bolstered Epidemic Management: Saving Each Lives and Financial system. In The twenty sixth ACM SIGKDD Worldwide Convention on Information Discovery and Information Mining-‘AI For Covid-19’ Initiative (2020).

  • Probert, W. J. M. et al. Context issues: utilizing reinforcement studying to develop human-readable, state-dependent outbreak response insurance policies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180277 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ohi, A. Q., Mridha, M. F., Monowar, M. M. & Hamid, M. A. Exploring optimum management of epidemic unfold utilizing reinforcement studying. Sci. Rep. 10, 22106 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khadilkar, H., Ganu, T. & Seetharam, D. P. Optimising Lockdown Insurance policies for Epidemic Management utilizing Reinforcement Studying. Trans. Indian Natl Acad. Eng. 5, 129–132 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, Q., Huang, W., Xu, F., Tang, Ok. & Li, Y. Reinforcement Studying Enhances the Specialists: Giant-scale COVID-19 Vaccine Allocation with Multi-factor Contact Community. In Proceedings of the twenty eighth ACM SIGKDD Convention on Information Discovery and Information Mining 4684–4694 (Affiliation for Computing Equipment, New York, NY, USA, 2022).

  • Libin, P. J. Ok. et al. Deep Reinforcement Studying for Giant-Scale Epidemic Management. In Machine Studying and Information Discovery in Databases. Utilized Information Science and Demo Monitor 155–170 (Springer Worldwide Publishing, 2021).

  • Awasthi, R. et al. VacSIM: Studying efficient methods for COVID-19 vaccine distribution utilizing reinforcement studying. Intell. Based mostly Med. 6, 100060 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tune, B., Wang, X., Solar, P. & Boukerche, A. Sturdy COVID-19 vaccination management in a multi-city dynamic transmission community: A novel reinforcement learning-based method. J. Netw. Pc Appl. 219, 103715 (2023).

    Article 

    Google Scholar
     

  • Padmanabhan, R., Meskin, N., Khattab, T., Shraim, M. & Al-Hitmi, M. Reinforcement learning-based choice help system for COVID-19. Biomed. Sign Course of. Management 68, 102676 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kompella, V. et al. Reinforcement Studying for Optimization of COVID-19 Mitigation insurance policies. In AAAI Fall Symposium 2020 on AI for Social Good (2020).

  • Mai, A., Gupta, N., Abouzeid, A. & Shasha, D. Planning a number of epidemic interventions with reinforcement studying. Int. Jt. Conf. Artif. Intell. 6147–6155 (2023).

  • Asikis, T., Böttcher, L. & Antulov-Fantulin, N. Neural peculiar differential equation management of dynamics on graphs. Phys. Rev. Res. 4, 013221 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Roy, Ok., Zhang, Q., Gaur, M. & Sheth, A. Information infused coverage gradients for adaptive pandemic management. AAAI-MAKE abs/2102.06245, (2021).

  • Colas, C. et al. EpidemiOptim: A Toolbox for the Optimization of Management Insurance policies in Epidemiological Fashions. jair 71, 479–519 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Capobianco, R. et al. Agent-Based mostly Markov Modeling for Improved COVID-19 Mitigation Insurance policies. jair 71, 953–992 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Ou, H. C., Wang, Ok., Doshi-Velez, F. & Tambe, M. Lively Screening on Recurrent Illnesses Contact Networks with Uncertainty: A Reinforcement Studying Method. In Multi-Agent-Based mostly Simulation XXI 54–65 (Springer Worldwide Publishing, 2021).

  • Trad, F. & El Falou, S. In the direction of Utilizing Deep Reinforcement Studying for Higher COVID-19 Vaccine Distribution Methods. In 2022 seventh Worldwide Convention on Information Science and Machine Studying Functions (CDMA) 7–12 (IEEE, 2022).

  • Bushaj, S., Yin, X., Beqiri, A., Andrews, D. & Büyüktahtakın, I. E. A simulation-deep reinforcement studying (SiRL) method for epidemic management optimization. Ann. Oper. Res. 1–33 (2022).

  • Chadi, M.-A. & Mousannif, H. A Reinforcement Studying Based mostly Choice Help Instrument for Epidemic Management: Validation Examine for COVID-19. Appl. Artif. Intell. 36, 2031821 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Guo, X. et al. PaCAR: COVID-19 Pandemic Management Choice Making through Giant-Scale Agent-Based mostly Modeling and Deep Reinforcement Studying. Med. Decis. Mak. 42, 1064–1077 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Kulkarni, N., Qiao, C. & Vereshchaka, A. Optimizing Pharmaceutical and Non-pharmaceutical Interventions Throughout Epidemics. In Social, Cultural, and Behavioral Modeling 229–240 (Springer Worldwide Publishing, 2022).

  • Deng, W., Qi, G. & Yu, X. Optimum management technique for COVID-19 regarding each life and financial system based mostly on deep reinforcement studying*. Chin. Phys. B 30, 120203 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Hwang, Y.-G., Kwon, H.-D. & Lee, J. Optimum management downside of numerous epidemic fashions with uncertainty based mostly on deep reinforcement studying. Numer. Strategies Partial Differ. Equ. 38, 2142–2162 (2022).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Wan, R., Zhang, X. & Tune, R. Multi-Goal Mannequin-based Reinforcement Studying for Infectious Illness Management. In Proceedings of the twenty seventh ACM SIGKDD Convention on Information Discovery & Information Mining 1634–1644 (Affiliation for Computing Equipment, New York, NY, USA, 2021).

  • Miralles-Pechuán, L., Jiménez, F., Ponce, H. & Martínez-Villaseñor, L. A Methodology Based mostly on Deep Q-Studying/Genetic Algorithms for Optimizing COVID-19 Pandemic Authorities Actions. In Proceedings of the twenty ninth ACM Worldwide Convention on Info & Information Administration 1135–1144 (Affiliation for Computing Equipment, New York, NY, USA, 2020).

  • Bampa, M., Fasth, T., Magnusson, S. & Papapetrou, P. EpidRLearn: Studying Intervention Methods for Epidemics with Reinforcement Studying. In Artificial Intelligence in Drugs 189–199 (Springer Worldwide Publishing, 2022).

  • Shami, L. & Lazebnik, T. Financial facets of the detection of new strains in a multi-strain epidemiological–mathematical mannequin. Chaos Solitons Fractals 165, 112823 (2022).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Du, X., Liu, T., Zhao, S., Tune, J. & Chen, H. District-Coupled Epidemic Management through Deep Reinforcement Studying. In Information Science, Engineering and Administration 417–428 (Springer Worldwide Publishing, 2022).

  • Benalcázar, D. R. & Enyioha, C. Deep Reinforcement Studying for Contagion Management. In 2021 IEEE Convention on Management Know-how and Functions (CCTA) 162–167 (IEEE, 2021).

  • Xia, M., Böttcher, L. & Chou, T. Controlling Epidemics By Optimum Allocation of Check Kits and Vaccine Doses Throughout Networks. IEEE Transactions on Community Science and Engineering 9, 1422–1436 (01 Might-June 2022).

  • Khatami, S. N. & Gopalappa, C. A reinforcement studying mannequin to tell optimum choice paths for HIV elimination. Math. Biosci. Eng. 18, 7666–7684 (2021).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zong, Ok. & Luo, C. Reinforcement studying based mostly framework for COVID-19 useful resource allocation. Comput. Ind. Eng. 167, 107960 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Du, X., Chen, H., Yang, B., Lengthy, C. & Zhao, S. HRL4EC: Hierarchical reinforcement studying for multi-mode epidemic management. Inf. Sci. 640, 119065 (2023).

    Article 

    Google Scholar
     

  • Nguyen, Q. D. & Prokopenko, M. A normal framework for optimising cost-effectiveness of pandemic response below partial intervention measures. Sci. Rep. 12, 19482 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Beigi, A. et al. Software of reinforcement studying for efficient vaccination methods of coronavirus illness 2019 (COVID-19). Eur. Phys. J. 136, 609 (2021).

    CAS 
    MATH 

    Google Scholar
     

  • He, S., Zha, H. & Ye, X. Community diffusions through neural mean-field dynamics. In Advances in Neural Info Processing Methods (eds. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F. & Lin, H.) vol. 33 2171–2183 (Curran Associates, Inc., 2020).

  • Zhang, M., Wang, X., Jin, L., Tune, M. & Li, Z. A brand new method for evaluating node significance in advanced networks through deep studying strategies. Neurocomputing 497, 13–27 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Yu, E.-Y., Wang, Y.-P., Fu, Y., Chen, D.-B. & Xie, M. Figuring out important nodes in advanced networks through graph convolutional networks. Knowl.-Based mostly Syst. 198, 105893 (2020).

    Article 

    Google Scholar
     

  • Ou, Y., Guo, Q., Xing, J.-L. & Liu, J.-G. Identification of spreading affect nodes through multi-level structural attributes based mostly on the graph convolutional community. Skilled Syst. Appl. 203, 117515 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Mežnar, S., Lavrač, N. & Škrlj, B. Prediction of the Results of Epidemic Spreading with Graph Neural Networks. In Complicated Networks & Their Functions IX 420–431 (Springer Worldwide Publishing, 2021).

  • Shah, N., Shah, H., Malensek, M., Pallickara, S. L. & Pallickara, S. Community evaluation for figuring out and characterizing illness outbreak affect from voluminous epidemiology information. In 2016 IEEE Worldwide Convention on Massive Information (Massive Information) 1222–1231 (IEEE, 2016).

  • Luo, Y. & Lu, P. N-RCNN: A Neighbor Contribution Graph Convolutional Community Based mostly Mannequin for Figuring out Important Nodes in Complicated Networks. In 2023 IEEE fifth Worldwide Convention on Energy, Clever Computing and Methods (ICPICS) 203–207 (IEEE, 2023).

  • Gao, L. et al. Key nodes identification in advanced networks based mostly on subnetwork characteristic extraction. J. King Saud. Univ. – Pc Inf. Sci. 35, 101631 (2023).

    MATH 

    Google Scholar
     

  • Michalak, Ok. Classifier-based evolutionary multiobjective optimization for the graph safety downside. Appl. Gentle Comput. 131, 109721 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Zhao, G., Jia, P., Zhou, A. & Zhang, B. InfGCN: Figuring out influential nodes in advanced networks with graph convolutional networks. Neurocomputing 414, 18–26 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Courtès, C., Franck, E., Lutz, Ok., Navoret, L. & Privat, Y. Diminished modelling and optimum management of epidemiological particular person‐based mostly fashions with contact heterogeneity. Optim. Management Appl. Strategies https://doi.org/10.1002/oca.2970 (2023).

  • Li, C., Yang, Y., Liang, H. & Wu, B. Sturdy PCL Discovery of Information-Pushed Imply-Subject Sport Methods and Management Issues. IEEE Trans. Circuits Syst. I Regul. Pap. 68, 2651–2664 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Kmet, T., Kmetova, M. & Végh, L. Neural Networks Simulation of Distributed SEIR System. Arithmetic 11, 2113 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Kmet, T. & Kmetova, M. Bézier curve parametrisation and echo state community strategies for fixing optimum management issues of SIR mannequin. Biosystems 186, 104029 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, Ok., Pun, C. S. & Wong, H. Y. Environment friendly social distancing throughout the COVID-19 pandemic: Integrating financial and public well being issues. Eur. J. Oper. Res. 304, 84–98 (2023).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Viet, A.-F. et al. A modelling framework based mostly on MDP to coordinate farmers’ illness management selections at a regional scale. PLoS One 13, e0197612 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Böttcher, L. & Nagler, J. Decisive situations for strategic vaccination in opposition to SARS-CoV-2. Chaos 31, 101105 (2021).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Taylor, N. P. & Cunniffe, N. J. Coupling machine studying and epidemiological modelling to characterise optimum fungicide doses when fungicide resistance is partial or quantitative. J. R. Soc. Interface 20, 20220685 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laosiritaworn, Y., Laosiritaworn, W. S. & Laosiritaworn, Y. Monte Carlo, design of experiment, and neural community modeling of fundamental copy quantity in illness spreading system. In 2018 seventh Worldwide Convention on Industrial Know-how and Administration (ICITM) 345–349 (IEEE, 2018).

  • Jaxa-Rozen, M. & Kwakkel, J. Tree-based ensemble strategies for sensitivity evaluation of environmental fashions: A efficiency comparability with Sobol and Morris methods. Environ. Mannequin. Softw. 107, 245–266 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Edeling, W. On the Deep Lively-Subspace Technique. SIAM/ASA J. Unsure. Quantification 11, 62–90 (2023).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Zhang, Z., Ma, X., Zhang, Y., Solar, G. & Zhang, Z.-Ok. Figuring out important driving elements for human brucellosis in Inside Mongolia, China. Phys. A: Stat. Mech. its Appl. 626, 129073 (2023).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Spear, R. C., Cheng, Q. & Wu, S. L. An instance of augmenting regional sensitivity evaluation utilizing machine studying software program. Water Resour. Res. 56, e2019WR026379 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Edali, M. & Yücel, G. Evaluation of a person‐based mostly influenza epidemic mannequin utilizing random forest metamodels and adaptive sequential sampling. Syst. Res. Behav. Sci. 37, 936–958 (2020).

    Article 

    Google Scholar
     

  • Fountain-Jones, N. M. et al. The spectral underpinnings of pathogen unfold on animal networks. Proc. Biol. Sci. 290, 20230951 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, D., Dong, W. & Wang, Q. Spatial and temporal evaluation of human an infection with the avian influenza A (H7N9) virus in China and analysis on a threat evaluation agent-based mannequin. Int. J. Infect. Dis. 106, 386–394 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ruth, W. & Lockhart, R. SARS-CoV-2 transmission in college courses. Netw. Mannequin Anal. Well being Inf. Bioinform 11, 32 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Santermans, E. et al. The social contact speculation below the idea of endemic equilibrium: Elucidating the transmission potential of VZV in Europe. Epidemics 11, 14–23 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanson, R. L., Rawdon, T. G., van Andel, M. & Yu, Z. Modelling the sphere personnel sources to manage foot-and-mouth illness outbreaks in New Zealand. Transbound. Emerg. Dis. 69, 3926–3939 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Weyant, C., Lee, S., Andrews, J. R., Alarid-Escudero, F. & Goldhaber-Fiebert, J. D. Dynamics of Respiratory Infectious Illnesses in Incarcerated and Free-Dwelling Populations: A Simulation Modeling Examine. Med. Decis. Mak. 43, 42–52 (2023).

    Article 

    Google Scholar
     

  • Eisenberg, J. N. S. et al. A dynamic mannequin to evaluate microbial well being dangers related with useful makes use of of biosolids. Danger Anal. 24, 221–236 (2004).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Markovic, S. et al. COVID-19 severity determinants inferred via ecological and epidemiological modeling. One Well being 13, 100355 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Beerman, J. T., Beaumont, G. G. & Giabbanelli, P. J. On the Necessity of Human Choice-Making Errors to Clarify Vaccination Charges for Covid-19: an Agent-Based mostly Modeling Examine. In 2023 Annual Modeling and Simulation Convention (ANNSIM) 413–424 (IEEE, 2023).

  • Dadgostari, F., Swarup, S., Adams, S., Beling, P. & Mortveit, H. S. Figuring out Correlates of Emergent Behaviors in Agent-Based mostly Simulation Fashions Utilizing Inverse Reinforcement Studying. In 2022 Winter Simulation Convention (WSC) 322–333 (IEEE, 2022).

  • Ling, C., Jiang, J., Wang, J. & Liang, Z. Supply Localization of Graph Diffusion through Variational Autoencoders for Graph Inverse Issues. In Proceedings of the twenty eighth ACM SIGKDD Convention on Information Discovery and Information Mining 1010–1020 (Affiliation for Computing Equipment, New York, NY, USA, 2022).

  • Xu, X. et al. PGSL: A probabilistic graph diffusion mannequin for supply localization. Skilled Syst. Appl. 238, 122028 (2024).

    Article 

    Google Scholar
     

  • Sha, H., Al Hasan, M. & Mohler, G. Supply detection on networks utilizing spatial temporal graph convolutional networks. In 2021 IEEE eighth Worldwide Convention on Information Science and Superior Analytics (DSAA) 1–11 (IEEE, 2021).

  • Ru, X., Moore, J. M., Zhang, X.-Y., Zeng, Y. & Yan, G. Inferring Affected person Zero on Temporal Networks through Graph Neural Networks. AAAI 37, 9632–9640 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Colijn, C. & Gardy, J. Phylogenetic tree shapes resolve illness transmission patterns. Evol. Med Public Well being 2014, 96–108 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lim, Y.-S., Ribeiro, B. & Towsley, D. Classifying latent an infection states in advanced networks. Computational Soc. Netw. 1, 1–15 (2015).

    MATH 

    Google Scholar
     

  • Čutura, G., Li, B., Swami, A. & Segarra, S. Deep Demixing: Reconstructing the Evolution of Epidemics utilizing Graph Neural Networks. In 2021 twenty ninth European Sign Processing Convention (EUSIPCO) 2204–2208 (IEEE, 2021).

  • Fu, Z. et al. Be Conscious of the Sizzling Zone: A Warning System of Hazard Space Prediction to Intervene Novel Coronavirus COVID-19 Outbreak. In Proceedings of the forty third Worldwide ACM SIGIR Convention on Analysis and Growth in Info Retrieval 2241–2250 (Affiliation for Computing Equipment, New York, NY, USA, 2020).

  • Yaesoubi, R. et al. Producing easy classification guidelines to foretell native surges in COVID-19 hospitalizations. Well being Care Manag. Sci. 26, 301–312 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basinski, A. J. et al. Bridging the hole: Utilizing reservoir ecology and human serosurveys to estimate Lassa virus spillover in West Africa. PLoS Comput. Biol. 17, e1008811 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghaffari, M., Srinivasan, A., Mubayi, A., Liu, X. & Viswanathan, Ok. Subsequent-generation high-resolution vector-borne illness threat evaluation. In Proceedings of the 2019 IEEE/ACM Worldwide Convention on Advances in Social Networks Evaluation and Mining 621–624 (Affiliation for Computing Equipment, New York, NY, USA, 2020).

  • Han, B. A., O’Regan, S. M., Paul Schmidt, J. & Drake, J. M. Integrating information mining and transmission concept within the ecology of infectious illnesses. Ecol. Lett. 23, 1178–1188 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Aronis, J. M. et al. A Bayesian system to detect and characterize overlapping outbreaks. J. Biomed. Inform. 73, 171–181 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cooper, G. F. et al. A technique for detecting and characterizing outbreaks of infectious illness from scientific studies. J. Biomed. Inform. 53, 15–26 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Wesolowski, A. et al. Influence of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Natl Acad. Sci. USA. 112, 11887–11892 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ceccato, P., Ramirez, B., Manyangadze, T., Gwakisa, P. & Thomson, M. C. Information and instruments to combine local weather and environmental info into public well being. Infect. Dis. Poverty 7, 126 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farooq, Z. et al. Artificial intelligence to foretell West Nile virus outbreaks with eco-climatic drivers. Lancet Reg. Well being Eur. 17, 100370 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Colón-González, F. J. et al. Probabilistic seasonal dengue forecasting in Vietnam: A modelling examine utilizing superensembles. PLoS Med. 18, e1003542 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabaria, C. W. et al. Mapping intra-urban malaria threat utilizing excessive decision satellite tv for pc imagery: a case examine of Dar es Salaam. Int. J. Well being Geogr. 15, 26 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bedson, J. et al. A review and agenda for built-in illness fashions together with social and behavioural elements. Nat. Hum. Behav. 5, 834–846 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Leist, A. Ok. et al. Mapping of machine studying approaches for description, prediction, and causal inference within the social and well being sciences. Sci. Adv. 8, eabk1942 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Karniadakis, G. et al. Physics-informed machine studying. Nat. Rev. Phys. 3, 422–440 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Zou, J. et al. A primer on deep studying in genomics. Nat. Genet. 51, 12–18 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gao, C. et al. Giant Language Fashions Empowered Agent-based Modeling and Simulation: A Survey and Views. arXiv [cs.AI] (2023).

  • Williams, R., Hosseinichimeh, N., Majumdar, A. & Ghaffarzadegan, N. Epidemic Modeling with Generative Brokers. arXiv [cs.AI] (2023).

  • Maher, M. C. et al. Predicting the mutational drivers of future SARS-CoV-2 variants of concern. Sci. Transl. Med. 14, eabk3445 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xu, C. & Jackson, S. A. Machine studying and advanced organic information. Genome Biol. 20, 76 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yamak, P. T., Yujian, L. & Gadosey, P. Ok. A comparability between ARIMA, LSTM, and GRU for time sequence forecasting. In Proceedings of the 2019 2nd Worldwide Convention on Algorithms, Computing and Artificial Intelligence (ACM, New York, NY, USA, https://doi.org/10.1145/3377713.3377722 2019).

  • Peters, M., et al. Chapter 11: Scoping Opinions. In Joanna Briggs Institute Guide for Proof Synthesis (2020).

  • Tricco, A. C. et al. PRISMA Extension for Scoping Opinions (PRISMA-ScR): Guidelines and Rationalization. Ann. Intern. Med. 169, 467–473 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kung, J. Y. Polyglot Search Translator. J. Can. Well being Libraries Assoc. 43, 35 (2022).

    MATH 

    Google Scholar
     

  • Endnote. https://support.clarivate.com/Endnote/s/?language=en_US.

  • Covidence – Higher systematic review administration. Covidence https://www.covidence.org/ (2020).

  • van de Schoot, R. et al. An open supply machine studying framework for environment friendly and clear systematic evaluations. Nat. Mach. Intell. 3, 125–133 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Nixon, Ok. et al. Actual-time COVID-19 forecasting: challenges and opportunities of mannequin efficiency and translation. Lancet Digit. Well being 4, e699–e701 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Reich, N. G. et al. A collaborative multiyear, multimodel evaluation of seasonal influenza forecasting in the US. Proc. Natl Acad. Sci. USA. 116, 3146–3154 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kennedy, M. C. & O’Hagan, A. Bayesian Calibration of Pc Fashions. J. R. Stat. Soc. Ser. B: Stat. Methodol. 63, 425–464 (2001).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Hazelbag, C. M., Dushoff, J., Dominic, E. M., Mthombothi, Z. E. & Delva, W. Calibration of individual-based fashions to epidemiological information: A scientific review. PLoS Comput. Biol. 16, e1007893 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandey, A. et al. Methods for holding Ebola in West Africa. Science 346, 991–995 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wells, C. R. et al. Influence of worldwide journey and border management measures on the worldwide unfold of the novel 2019 coronavirus outbreak. Proc. Natl Acad. Sci. USA. 117, 7504–7509 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Medlock, J. & Galvani, A. P. Optimizing influenza vaccine distribution. Science 325, 1705–1708 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wu, J., Dhingra, R., Gambhir, M. & Remais, J. V. Sensitivity evaluation of infectious illness fashions: strategies, advances and their software. J. R. Soc. Interface 10, 20121018 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edeling, W. et al. The impression of uncertainty on predictions of the CovidSim epidemiological code. Nat. Comput. Sci. 1, 128–135 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Kühnert, D., Stadler, T., Vaughan, T. G. & Drummond, A. J. Simultaneous reconstruction of evolutionary historical past and epidemiological dynamics from viral sequences with the birth-death SIR mannequin. J. R. Soc. Interface 11, 20131106 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, A. et al. Epidemic mitigation by statistical inference from contact tracing information. Proc. Natl. Acad. Sci. USA. 118, (2021).

  • Stone, L., Olinky, R. & Huppert, A. Seasonal dynamics of recurrent epidemics. Nature 446, 533–536 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *