Categories
News

Intelligent skin disease prediction system using transfer learning and explainable artificial intelligence


  • Mohammed, S. S. & Al-Tuwaijari, J. M. Skin disease classification system based mostly on machine learning approach: a Survey. IOP Conf. Ser. Mater. Sci. Eng. 1076 (012045), 1–13 (2021).

    MATH 

    Google Scholar
     

  • Al-Tbali, J., Anam, L., Al-Jamrah, Okay. M. & Abdul Moaen, F. Chickenpox Outbreak Investigation in Assabain District, Sana’a Metropolis, Yemen, January to February 2019, Iproceedings, vol. 8, no. 8, pp. 1–2, doi: (2022). https://doi.org/10.2196/36598

  • Sanjita, S., Azeem, M. & Islamovna, U. G. Survey and outbreak of hen pox; acknowledgement by med-student, in Proceedings of the 2nd Worldwide Scientific and Sensible Convention, Brussels, Belgium, pp. 77–82. (2023).

  • Nasiba, P. & Dildora, B. CHICKENPOX, in Proceedings of Worldwide Convention on Scientific Analysis in Pure and Social Sciences, Toronto, Canada, pp. 202–205. (2023).

  • Kujur, A., Kiran, Okay. A. & Kujur, M. An Epidemiological Research of Outbreak Investigation of Chickenpox in distant hamlets of a tribal state in India. Cureus 14 (6), 1–11. https://doi.org/10.7759/cureus.26454 (2022).

    Article 

    Google Scholar
     

  • Verma, R., Bairwa, M., Chawla, S., Prinja, S. & Rajput, M. Ought to Chickenpox vaccine be included within the nationwide immunization schedule in India? Hum. Vaccin. 7 (8), 874–877. https://doi.org/10.4161/hv.7.8.15685 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Chovatiya, R. & Silverberg, J. I. Inpatient morbidity and mortality of measles in the US. PLOS ONE. 15, 1–13. https://doi.org/10.1371/journal.pone.0231329 (2020). no. 4.

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Rabaan, A. A. et al. Updates on measles incidence and eradication: emphasis on the immunological points of Measles an infection. Medicina 58, 1–20. https://doi.org/10.3390/medicina58050680 (2022). no. 5.

    Article 

    Google Scholar
     

  • Homosexual, N. J. The idea of Measles Elimination: implications for the design of elimination methods. J. Infect. Dis. 189, 27–35. https://doi.org/10.1086/381592 (2004).

    Article 
    MATH 

    Google Scholar
     

  • Thornhill, J. P. et al. Monkeypox Virus an infection in people throughout 16 international locations – April-June 2022. N Engl. J. Med. 387 (8), 679–691. https://doi.org/10.1056/NEJMoa2207323 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mitjà, O. et al. Monkeypox, Lancet, vol. 401, no. 10370, pp. 60–74, doi: (2023). https://doi.org/10.1016/S0140-6736(22)02075-X

  • Shchelkunov, S. N. et al. Evaluation of the monkeypox virus genome. Virology 297 (2), 172–194. https://doi.org/10.1006/viro.2002.1446 (2002).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nguyen, P. Y., Ajisegiri, W., Costantino, V., Chughtai, A. A. & MacIntyre, C. R. Reemergence of human monkeypox and declining Inhabitants Immunity within the context of urbanization, Nigeria, 2017–2020. Emerg. Infect. Dis. 27 (4), 1007–1014 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doucleff, M. The unfold of monkeypox was predicted by scientists in 1988: Goats and Soda : NPR. Accessed: Aug. 28, 2022. [Online]. Accessible: https://www.npr.org/sections/goatsandsoda/2022/05/27/1101751627/scientists-warned-us-about-monkeypox-in-1988-heres-why-they-were-right

  • Multi-country monkeypox outbreak in non-endemic international locations. Accessed: Aug. 28. [Online]. Accessible: (2022). https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385

  • Bunge, E. M. et al. The altering epidemiology of human monkeypox—A possible risk? A scientific assessment. PLoS Negl. Trop. Dis. 16, 1–20. https://doi.org/10.1371/journal.pntd.0010141 (2022). no. 2.

    Article 
    MATH 

    Google Scholar
     

  • Mansour, R. F., Althubiti, S. A. & Alenezi, F. Pc Imaginative and prescient with Machine Learning enabled skin lesion classification mannequin. Comput. Mater. Contin. 73 (1), 849–864. https://doi.org/10.32604/cmc.2022.029265 (2022).

    Article 

    Google Scholar
     

  • Dong, S., Wang, P. & Abbas, Okay. A survey on deep learning and its purposes. Comput. Sci. Rev. 40, 1–22. https://doi.org/10.1016/j.cosrev.2021.100379 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Abdullah, A. A., Hassan, M. M. & Mustafa, Y. T. A assessment on bayesian deep learning in Healthcare: Functions and challenges. IEEE Entry. 10, 36538–36562. https://doi.org/10.1109/ACCESS.2022.3163384 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Yan, Okay., Wang, X., Lu, L. & Summers, R. M. DeepLesion: automated mining of large-scale lesion annotations and common lesion detection with deep learning. J. Med. Imaging. 5 (03), 1–11. https://doi.org/10.1117/1.jmi.5.3.036501 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Kijowski, R., Liu, F., Caliva, F. & Pedoia, V. Deep learning for Lesion Detection, Development, and prediction of Musculoskeletal Disease. J. Magn. Reson. Imaging. 52 (6), 1607–1619. https://doi.org/10.1002/jmri.27001 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Anupama, C. S. S. et al. Deep learning with backtracking search optimization based mostly skin lesion analysis mannequin. Comput. Mater. Contin. 70 (1), 1297–1313. https://doi.org/10.32604/cmc.2022.018396 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Talo, M., Baloglu, U. B., Yıldırım, Ö. & Rajendra Acharya, U. Utility of deep transfer learning for automated mind abnormality classification using MR pictures. Cogn. Syst. Res. 54, 176–188. https://doi.org/10.1016/j.cogsys.2018.12.007 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Ozturk, T. et al. Automated detection of COVID-19 instances using deep neural networks with X-ray pictures. Comput. Biol. Med. 121, 1–11. https://doi.org/10.1016/j.compbiomed.2020.103792 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Kott, O. et al. Growth of a deep learning algorithm for the histopathologic analysis and Gleason grading of prostate Most cancers biopsies: a pilot examine. Eur. Urol. Focus. 7 (2), 347–351. https://doi.org/10.1016/j.euf.2019.11.003 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Shkolyar, E. et al. Augmented bladder tumor detection using deep learning. Eur. Urol. 76 (6), 714–718. https://doi.org/10.1016/j.eururo.2019.08.032 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ahmed, F., Fatima, A., Mamoon, M. & Khan, S. Identification of the Diabetic Retinopathy Using ResNet-18, in 2nd Worldwide Convention on Cyber Resilience, ICCR Dubai, United Arab Emirates: IEEE, 2024, pp. 1–6. doi: (2024). https://doi.org/10.1109/ICCR61006.2024.10532925

  • Menaouer, B., Zoulikha, D., El-Houda, Okay. N., Mohammed, S. & Matta, N. Coronavirus pneumonia classification using X-Ray and CT scan pictures with deep convolutional neural community fashions. J. Inf. Technol. Res. 15 (1), 1–23. https://doi.org/10.4018/jitr.299391 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Menaouer, B., El-Houda, Okay. N., Zoulikha, D., Mohammed, S. & Matta, N. Detection and classification of mind tumors from MRI pictures using a deep convolutional neural Community Strategy. Int. J. Softw. Innov. 10 (1), 1–25. https://doi.org/10.4018/IJSI.293269 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Hesamian, M. H., Jia, W., He, X. & Kennedy, P. Deep learning methods for Medical Picture Segmentation: achievements and challenges. J. Digit. Imaging. 32 (4), 582–596. https://doi.org/10.1007/s10278-019-00227-x (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Roth, H. R. et al. Deep learning and its utility to medical picture segmentation. Med. IMAGING Technol. 36 (2), 63–71. https://doi.org/10.11409/mit.36.63 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Mohammed, S. S., Menaouer, B., Zohra, A. F. F. & Nada, M. Sentiment evaluation of COVID-19 tweets using adaptive neuro-fuzzy inference system fashions. Int. J. Softw. Sci. Comput. Intell. 14 (1), 1–20. https://doi.org/10.4018/IJSSCI.300361 (2022).

    Article 

    Google Scholar
     

  • Shen, D., Wu, G. & Suk, H. I. Deep learning in Medical Picture Evaluation. Annu. Rev. Biomed. Eng. 176 (1), 1–35. https://doi.org/10.1146/annurev-bioeng-071516-044442.Deep (2017).

    Article 
    MATH 

    Google Scholar
     

  • Meijering, E. A hen ’ s-eye view of deep learning in bioimage evaluation. Comput. Struct. Biotechnol. J. 18, 2312–2325. https://doi.org/10.1016/j.csbj.2020.08.003 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jia, X., Ren, L. & Cai, J. Scientific implementation of AI applied sciences would require interpretable AI fashions. Med. Phys. 47 (1), 1–4. https://doi.org/10.1002/mp.13891 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Karimkhani, C. et al. World skin disease morbidity and mortality an replace from the worldwide burden of disease examine 2013. JAMA Dermatology. 153 (5), 406–412. https://doi.org/10.1001/jamadermatol.2016.5538 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Seth, D., Cheldize, Okay., Brown, D. & Freeman, E. E. World burden of skin disease: inequities and improvements. Curr. Dermatol. Rep. 6 (3), 204–210. https://doi.org/10.1007/s13671-017-0192-7 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chang, X. & Chen, M. Analysis progress of varicella and its immunoprophylaxis. Entrance. Med. Sci. Res. 4 (5), 36–39. https://doi.org/10.25236/FMSR.2022.040507 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wutzler, P. et al. Varicella vaccination – the worldwide expertise. Professional Rev. Vaccines. 16 (8), 833–843 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Roy, Okay. et al. Skin disease detection based mostly on totally different segmentation methods, in Worldwide Convention on Opto-Electronics and Utilized Optics, Optronix 2019, Kolkata, India: IEEE, pp. 1–5. doi: (2019). https://doi.org/10.1109/OPTRONIX.2019.8862403

  • Daud, M. R. H. M., Yaacob, N. A., Ibrahim, M. I. & Muhammad, W. A. R. W. 5-Yr Pattern of measles and its Related elements inPahang, Malaysia: a Inhabitants-based examine. Int. J. Environ. Res. Public. Well being. 19, 1–10 (2022).

    MATH 

    Google Scholar
     

  • VON MAGNUS, S., ANDERSEN, E. Okay., PETERSEN, Okay. B. & AKSEI, B. A. A POX-LIKE DISEASE IN CYNOMOLGUS MONKEYS, FROM STATENS SEHUMINSTITUT, DIRECTOH J. OHSKOV, M.D., pp. 156–176, (1959).

  • Ladnyj, I. D., Ziegler, P. & Kima, E. A human an infection brought on by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull. World Well being Organ. 46 (5), 593–597 (1972).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Reynolds, M. G., Doty, J. B., McCollum, A. M., Olson, V. A. & Nakazawa, Y. Monkeypox re-emergence in Africa: a name to broaden the idea and follow of 1 well being. Professional Rev. Anti Infect. Ther. 17 (2), 129–139. https://doi.org/10.1080/14787210.2019.1567330 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koenig, Okay. L., Beÿ, C. Okay. & Marty, A. M. Monkeypox 2022 identify-Isolate-Inform: a 3I Instrument for frontline clinicians for a zoonosis with escalating human group transmission. One Heal. 15, 1–13. https://doi.org/10.1016/j.onehlt.2022.100410 (2022).

    Article 

    Google Scholar
     

  • W. H. O. (WHO), Multi-country monkeypox outbreak in non-endemic international locations: Replace. Accessed: Sep. 04, 2022. [Online]. Accessible: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON388

  • Ali, S. N. et al. Monkeypox Skin Lesion Detection Using Deep Learning Fashions: A Feasibility Research, Comput. Vis. Sample Recognit., pp. 2–5, [Online]. Accessible: (2022). http://arxiv.org/abs/2207.03342

  • Gülmez, B. MonkeypoxHybridNet: A hybrid deep convolutional neural community mannequin for monkeypox disease detection, Int. Res. Eng. Sci., vol. 3, pp. 49–64, [Online]. Accessible: (2022). https://desytamara.blogspot.com/2017/11/sistem-pelayanan-perpustakaan-dan-jenis.html%0Ahttps://lambeturah.id/pengertian-website-secara-umum-dan-menurut-para-ahli/%0Ahttps://www.researchgate.net/publication/269107473_What_is_governance/link/548173090cf2252

  • Irmak, M. C., Aydın, T. & Yağanoğlu, M. Monkeypox Skin Lesion Detection with MobileNetV2 and VGGNet Fashions, in TIPTEKNO 2022 – Medical Applied sciences Congress, Proceedings, Antalya, Turkey, pp. 2–5. doi: (2022). https://doi.org/10.1109/TIPTEKNO56568.2022.9960194

  • Singh, U. & Songare, L. S. Evaluation and Detection of Monkeypox using the GoogLeNet Mannequin, in In Proceedings of the Worldwide Convention on Automation, Computing and Renewable Techniques (ICACRS), Pudukkottai, India, 2022, pp. 1000–1008. doi: (2022). https://doi.org/10.1109/ICACRS55517.2022.10029125

  • Sharma, Okay., Kishlay, V., Kumar & Mittal, M. MonkeyPox, Measles and ChickenPox Detection by Picture-Processing using Residual Neural Community (ResNet), in sixth Worldwide Convention on Data Techniques and Pc Networks, ISCON 2023, Mathura, India: IEEE, 2023, pp. 1–6. doi: (2023). https://doi.org/10.1109/ISCON57294.2023.10112085

  • Sethy, P. Okay. et al. Detection of Monkeypox Primarily based on Improved Darknet19, in IEEE eighth Worldwide Convention for Convergence in Expertise, I2CT 2023, Pune, India: IEEE, 2023, pp. 1–3. doi: (2023). https://doi.org/10.1109/I2CT57861.2023.10126170

  • Uysal, F. Detection of Monkeypox Disease from Human skin pictures with a Hybrid Deep Learning Mannequin. Diagnostics 13 (10), 1–23. https://doi.org/10.3390/diagnostics13101772 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Ariansyah, M. H., Winarno, S. & Sani, R. R. Monkeypox and Measles Detection using CNN with VGG-16 transfer learning. J. Comput. Res. Innov. 8 (1), 32–44. https://doi.org/10.3390/s23041783 (2023).

    Article 

    Google Scholar
     

  • Kundu, D., Siddiqi, U. R. & Rahman, M. M. Imaginative and prescient Transformer based mostly Deep Learning Mannequin for Monkeypox Detection, in twenty fifth Worldwide Convention on Pc and Data Expertise (ICCIT), Cox’s Bazar, Bangladesh: IEEE, pp. 1021–1026. doi: (2023). https://doi.org/10.1109/iccit57492.2022.10054797

  • Akram, A. et al. SkinMarkNet: an automatic method for prediction of monkeyPox using picture information augmentation with deep ensemble learning fashions. Multimed Instruments Appl. 1–17. https://doi.org/10.1007/s11042-024-19862-w (2024).

  • Monkeypox Skin Pictures Dataset (MSID). | Kaggle. Accessed: Aug. 28, 2022. [Online]. Accessible: https://www.kaggle.com/datasets/dipuiucse/monkeypoxskinimagedataset

  • Simonyan, Okay. & Zisserman, A. Very deep convolutional networks for large-scale picture recognition, in Revealed as a convention paper at ICLR, pp. 1–14. (2015).

  • Althubiti, S. A., Alenezi, F., Shitharth, S., Sangeetha, Okay. & Reddy, C. V. S. Circuit Manufacturing Defect Detection Using VGG16 Convolutional Neural Networks, Wirel. Commun. Mob. Comput., vol. pp. 1–10, 2022, doi: (2022). https://doi.org/10.1155/2022/1070405

  • Doshi-Velez, F. & Kim, B. In direction of a Rigorous Science of interpretable machine learning. arXiv Prepr, pp. 1–13, (2017).

  • Bach, S. et al. On pixel-wise explanations for non-linear classifier choices by layer-wise relevance propagation. PLoS One. 10 (7), 1–46. https://doi.org/10.1371/journal.pone.0130140 (2015).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Böhle, M., Eitel, F., Weygandt, M. & Ritter, Okay. Layer-wise relevance propagation for explaining deep neural community choices in MRI-based Alzheimer’s disease classification. Entrance. Getting older Neurosci. 11, 1–17. https://doi.org/10.3389/fnagi.2019.00194 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Huang, X., Jamonnak, S., Zhao, Y., Wu, T. H. & Xu, W. A visible designer of layer-wise relevance propagation fashions. Eurographics Conf. Vis. 40 (3), 227–238 (2021).


    Google Scholar
     

  • Seliya, N., Khoshgoftaar, T. M. & Van Hulse, J. A examine on the relationships of classifier efficiency metrics, in twenty first IEEE Worldwide Convention on Instruments with Artificial Intelligence, Newark, NJ, USA, pp. 59–66. doi: (2009). https://doi.org/10.1109/ICTAI.2009.25



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *