Categories
News

How sociodemographic factors relate to trust in artificial intelligence among students in Poland and the United Kingdom


  • Stamboliev, E. & Christiaens, T. How empty is reliable AI? A discourse evaluation of the ethics tips of reliable AI. Crit. Coverage Stud. n/a, 1–18. https://doi.org/10.1080/19460171.2024.2315431 (2024).

  • Pink, S., Quilty, E., Grundy, J., Hoda, R. & Trust Artificial Intelligence and Software program Practitioners: An Interdisciplinary Agenda 1–14. https://doi.org/10.1007/s00146-024-01882-7 (AI & Society, 2024)

  • Raz, A., Heinrichs, B., Avnoon, N., Eyal, G. & Inbar, Y. Prediction and explainability in AI: putting a brand new steadiness? Massive Knowledge Soc. 11, 1–5. https://doi.org/10.1177/20539517241235871 (2024).

    Article 

    Google Scholar
     

  • de Gil, H., Goyanes, M. & Durotoye, T. A. Scholarly definition of artificial intelligence (AI): advancing AI as a conceptual framework in communication analysis. Polit. Commun. 41, 317–334. https://doi.org/10.1080/10584609.2023.2290497 (2024).

    Article 

    Google Scholar
     

  • Nyholm, S. Artificial intelligence and human enhancement: can AI applied sciences make us extra (artificially) clever? Camb. Q. Healthc. Ethics. 33, 76–88. https://doi.org/10.1017/S0963180123000464 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Łapińska, J. et al. Zaufanie Pracowników do Sztucznej Inteligencji w Przedsiebiorstwach Przemysłowych Funkcjonujacych w Polsce. Raport z badania [Employees’ Trust in Artificial Intelligence in Industrial Enterprises Operating in Poland. Research Report] (Institute of Financial Analysis, 2020).

  • Gillespie, N., Lockey, S. & Curtis, C. Trust in Artificial Intelligence: Australian Insights (The College of Queensland and KPMG Australia, 2023).

  • Sztompka, P. Socjologia. Wykłady o społeczeństwie [Sociology. Lectures on Society] (Znak Horyzont, 2021).

  • Lewis, J. D. & Weigert, A. Trust as a social actuality. Soc. Forces. 63, 967–985. https://doi.org/10.2307/2578601 (1985).

    Article 

    Google Scholar
     

  • Ejdys, J. Constructing expertise trust in ICT utility at a college. Int. J. Emerg. Markets. 13, 980–997. https://doi.org/10.1108/IJoEM-07-2017-0234 (2018).

    Article 

    Google Scholar
     

  • Pistilli, L. & Pennarola, F. 87–101 (Springer Worldwide Publishing).

  • Lockey, S., Gillespie, N. & Holm, D. & Asadi Someh, I. In 54th Hawaii Worldwide Convention on System Sciences 5463–5472 (HICSS).

  • Yi, Y., Wu, Z. & Tung, L. L. How particular person variations affect expertise utilization conduct? Towards an built-in framework. J. Comput. Inform. Syst. 46, 52–63. https://doi.org/10.1080/08874417.2006.11645883 (2005).

    Article 

    Google Scholar
     

  • Zdun, M. Innowacje. Perspektywa społeczno-kulturowa [Innovations: A Socio-Cultural Perspective] (Wydawnictwo KUL, 2016).

  • Webb, L. & Felix, J. Use of Artificial Intelligence in Training Supply and Evaluation (UK Parliament, 2024).

  • Digital Care. Technologia okiem studenta [Technology From a Student’s Perspective] (Digital Care, 2023).

  • Walters, W. H. The effectiveness of software program designed to detect AI-generated writing: a comparability of 16 AI textual content detectors. Open. Inform. Sci. 7, 1–24. https://doi.org/10.1515/opis-2022-0158 (2023).

    Article 

    Google Scholar
     

  • Niu, W., Zhang, W., Zhang, C. & Chen, X. The function of artificial intelligence autonomy in larger training: A makes use of and gratification perspective. Sustainability 16, 1–26. https://doi.org/10.3390/su16031276 (2024).

  • Holmes, W., Persson, J., Chounta, I. A., Wasson, B. & Dimitrova, V. Artificial Intelligence and Training. A Crucial view via the lens of Human Rights, Democracy and the rule of legislation (Council of Europe Publishing, 2023).

  • Clark, J. & Perrault, R. Artificial Intelligence Index Report 2023 (Stanford College Human-Centered Artificial Intelligence, 2024).

  • Wendler, C., Veselovsky, V., Monea, G. & West, R. Do Llamas Work in English? On the Latent Language of Multilingual Transformers 1–28. https://doi.org/10.48550/arXiv.2402.10588 (ArXiv, 2024).

  • Schwab, Ok. & Zahidi, S. How International locations are Acting on the Highway to Restoration: The World Competitiveness Report (World Financial Discussion board, 2020).

  • Amoozadeh, M. et al. Affiliation for computing equipment. In Proceedings of the fifty fifth ACM Technical Symposium on Pc Science Training V., vol. 1, 67–73 (2024).

  • Hatem, N. A. H., Ibrahim, M. I. M. & Yousuf, S. A. Yemeni college students public perceptions towards the use of artificial intelligence in healthcare: a cross-sectional research (2024).

  • Novozhilova, E., Mays, Ok., Paik, S. & Katz, J. E. Extra succesful, much less benevolent: trust perceptions of AI techniques throughout Societal contexts. Mach. Be taught. Knowl. Extr. 6, 342–366. https://doi.org/10.3390/make6010017 (2024).

    Article 

    Google Scholar
     

  • Obenza, B. et al. The mediating impact of AI trust on AI self-efficacy and angle towards AI of Faculty Students. Int. J. Metaverse (IJM). 2, 1–10. https://doi.org/10.54536/ijm.v2i1.2286 (2024).

    Article 

    Google Scholar
     

  • Choung, H., David, P. & Ross, A. Trust in AI and its function in the acceptance of AI applied sciences. Int. J. Hum.–Comput. Work together. 39, 1727–1739. https://doi.org/10.1080/10447318.2022.2050543 (2023).

    Article 

    Google Scholar
     

  • Polyportis, A. & Pahos, N. Understanding students’ adoption of the ChatGPT Chatbot in Greater Training: the function of Anthropomorphism, Trust, Design Novelty and Institutional Coverage. Behav. Inform. Technol. 1–22. https://doi.org/10.1080/0144929X.2024.2317364 (2024).

  • Qin, F., Li, Ok. & Yan, J. Understanding person trust in artificial intelligence-based academic techniques: proof from China. Br. J. Edu. Technol. 51, 1693–1710. https://doi.org/10.1111/bjet.12994 (2020).

    Article 

    Google Scholar
     

  • Conijn, R., Kahr, P. & Snijders, C. The results of explanations in automated essay scoring techniques on pupil trust and motivation. J. Be taught. Anal. 10, 37–53. https://doi.org/10.18608/jla.2023.7801 (2023).

    Article 

    Google Scholar
     

  • Syed, W., Basil, A. & Al-Rawi, M. Evaluation of consciousness, perceptions, and opinions in the direction of artificial intelligence among healthcare students in Riyadh, Saudi Arabia. Medicina 59, 1–12. https://doi.org/10.3390/medicina59050828 (2023).

  • Strzelecki, A. Students’ acceptance of ChatGPT in Greater Training: an prolonged unified idea of acceptance and use of expertise. Innov. Excessive. Educ. https://doi.org/10.1007/s10755-023-09686-1 (2023).

    Article 

    Google Scholar
     

  • Dashti, M. et al. Attitudes, information, and perceptions of dentists and dental students towards artificial intelligence: a scientific evaluation. J. Taibah Univ. Med. Sci. 19, 327–337. https://doi.org/10.1016/j.jtumed.2023.12.010 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strzelecki, A. & ElArabawy, S. Investigation of the moderation impact of gender and research degree on the acceptance and use of generative AI by larger training students: comparative proof from Poland and Egypt. Br. J. Academic Technol.. 1–22. https://doi.org/10.1111/bjet.13425 (2023).

  • Mantello, P., Ho, M. T., Nguyen, M. H. & Vuong, Q. H. Bosses with out a coronary heart: Socio-demographic and cross-cultural determinants of angle towards emotional AI in the Office. AI Soc. 38, 97–119. https://doi.org/10.1007/s00146-021-01290-1 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kozak, J. & Fel, S. The connection between Religiosity Degree and emotional responses to Artificial Intelligence in College students. Religions 15, 1–18. https://doi.org/10.3390/rel15030331 (2024).

    Article 

    Google Scholar
     

  • Tran, Ok. & Nguyen, T. Preliminary analysis on the social attitudes towards AI’s involvement in Christian Training in Vietnam: selling AI expertise for Spiritual Training. Religions 12, 1–20. https://doi.org/10.3390/rel12030208 (2021).

    Article 

    Google Scholar
     

  • Vu, H. T. & Lim, J. Results of Nation and Particular person Factors on Public Acceptance of Artificial Intelligence and Robotics Applied sciences: a Multilevel SEM evaluation of 28-Nation Survey Knowledge. Behav. Inform. Technol. 41, 1515–1528. https://doi.org/10.1080/0144929X.2021.1884288 (2022).

    Article 

    Google Scholar
     

  • Bokhari, S. A. A. & Myeong, S. An evaluation of artificial intelligence adoption conduct making use of prolonged UTAUT framework in City Cities: The context of collectivistic tradition. Eng. Proc. 56, 1–7. https://doi.org/10.3390/ASEC2023-15963 (2023).

  • Ismatullaev, U. V. U. & Kim, S. H. Evaluation of the factors affecting acceptance of AI-Infused techniques. Hum. Factors. 66, 126–144. https://doi.org/10.1177/00187208211064707 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Sadlon, W. The social exercise of polish migrants in the Republic of Eire from the perspective of their religiosity. Rev. Spiritual Res. 64, 907–932. https://doi.org/10.1007/s13644-022-00504-2 (2022).

    Article 

    Google Scholar
     

  • Phukan, S. Ok. & Hazarika, J. P. Affect and factors related to private community measurement of underage drinkers recruited via respondent-driven sampling in Dibrugarh District of Assam, India. J. Well being Manag. 1–9. https://doi.org/10.1177/09720634241237590 (2024).

  • White, R. Respondent pushed sampling—the place we’re and the place ought to we be going? Intercourse. Transm. Infect. 88, 397–399. https://doi.org/10.1136/sextrans-2012-050703 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Sperandei, S., Bastos, L. S., Ribeiro-Alves, M., Reis, A. & Bastos, F. I. assessing logistic regression utilized to respondent-driven sampling research: a simulation research with an utility to empirical knowledge. Int. J. Soc. Res. Methodol. 26, 319–333. https://doi.org/10.1080/13645579.2022.2031153 (2023).

    Article 

    Google Scholar
     

  • Raifman, S., DeVost, M. A., Digitale, J. C., Chen, Y. H. & Morris, M. D. Respondent-driven sampling: a sampling technique for hard-to-reach populations and past. Curr. Epidemiol. Rep. 9, 38–47. https://doi.org/10.1007/s40471-022-00287-8 (2022).

    Article 

    Google Scholar
     

  • GUS. Szkolnictwo wyższe w roku akademickim 2022/2023 [Higher Education in the Academic Year 2022/2023]. (Główny Urząd Statystyczny, 2023).

  • Navarrete, M. S., Adrian, C. & Bachelet, V. C. Respondent-driven sampling: benefits and disadvantages from a sampling technique. Medwave 21, e8513. https://doi.org/10.5867/medwave.2022.01.002528 (2022).

  • Brainard, J., Smith, L. E., Potts, H. W. W. & Rubin, G. J. The connection between age and intercourse accomplice counts throughout the Mpox Outbreak in the UK, 2022. Plos One. 18, 1–15. https://doi.org/10.1371/journal.pone.0291001 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Neves, J. & Sephenson, R. Pupil Educational Expertise Survey 2023 (Greater Training Coverage Institute, 2023).

  • Bolton, P. Greater Training Pupil Numbers (Home of Commons, 2024).

  • Feng, S. & Huang, F. Does survey mode matter? An experimental analysis of knowledge high quality in China. An experimental analysis of knowledge high quality in China, 1–26. https://doi.org/10.2139/ssrn.4739234 (2024).

  • Rosenberg, M. J. & Hovland, C. I. in In Perspective Group and Change: An Evaluation of Consistency among Perspective Parts 1–14 (eds Rosenberg, M. J., Carl, I. & Hovland) (Yale College Press, 1960).

  • Cwynar, A., Świecka, B., Filipek, Ok. & Porzak, R. Shoppers’ information of cashless funds: growth, validation, and usability of a measurement scale. J. Consum. Aff. 56, 640–665. https://doi.org/10.1111/joca.12424 (2022).

    Article 

    Google Scholar
     

  • Cheung, S. F., Pesigan, I. J. A. & Vong, W. N. DIY bootstrapping: getting the nonparametric bootstrap confidence interval in SPSS for any statistics or perform of statistics (when this Bootstrapping is suitable). Behav. Res. Strategies. 55, 474–490. https://doi.org/10.3758/s13428-022-01808-5 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Xiong, Y., Shi, Y., Pu, Q. & Liu, N. Extra trust or extra threat? Consumer acceptance of artificial intelligence digital assistant. Human Factors and Ergonomics in Manufacturing & Service Industries n/a, 1–16. https://doi.org/10.1002/hfm.21020 (2023).

  • Horodyski, P. Recruiter’s notion of artificial intelligence (AI)-based instruments in recruitment. Computer systems Hum. Behav. Rep. 10, 1–10. https://doi.org/10.1016/j.chbr.2023.100298 (2023).

    Article 

    Google Scholar
     

  • Mousavi Baigi, S. F. et al. Attitudes, information, and abilities in the direction of artificial intelligence among healthcare students: a scientific evaluation. Well being Sci. Rep. 6, 1–23. https://doi.org/10.1002/hsr2.1138 (2023).

    Article 

    Google Scholar
     

  • Yang, R. & Wibowo, S. Consumer trust in artificial intelligence: a complete conceptual framework. Electron. Markets. 32, 2053–2077. https://doi.org/10.1007/s12525-022-00592-6 (2022).

    Article 

    Google Scholar
     

  • Mustafa, S., Zhang, W., Shehzad, M. U., Anwar, A. & Rubakula, G. Does well being consciousness matter to undertake new expertise? An built-in mannequin of UTAUT2 with SEM-fsQCA strategy. Entrance. Psychol. 13, 1–19. https://doi.org/10.3389/fpsyg.2022.836194 (2022).

    Article 

    Google Scholar
     

  • Greiner, B. & Zednik, A. Trust and age: an experiment with present and former students. Econ. Lett. 181, 37–39. https://doi.org/10.1016/j.econlet.2019.04.004 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Mustafa, S. et al. Digital students’ satisfaction with and intention to Use On-line instructing modes, function of massive 5 persona traits. Entrance. Psychol. 13, 1–14. https://doi.org/10.3389/fpsyg.2022.956281 (2022).

    Article 

    Google Scholar
     

  • Grassini, S. Shaping the way forward for training: exploring the potential and penalties of AI and ChatGPT in academic settings. Educ. Sci. 13, 1–13. https://doi.org/10.3390/educsci13070692 (2023).

    Article 

    Google Scholar
     

  • Mustafa, S., Zhang, W., Anwar, S., Jamil, Ok. & Rana, S. An built-in mannequin of UTAUT2 to perceive shoppers’ 5G expertise acceptance utilizing SEM-ANN strategy. Sci. Rep. 12, 1–19. https://doi.org/10.1038/s41598-022-24532-8 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xia, J., Li, M. & Li, J. Comparative Evaluation Imaginative and prescient of Worldwide AI Programs 1–9. https://doi.org/10.48550/arXiv.2407.16881 (arXiv, 2024)

  • Huang, J. & Tan, M. The function of ChatGPT in Scientific Communication: writing Higher Scientific Evaluation Articles. Am. J. Most cancers Res. 13, 1148–1154 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitria, T. N. Artificial intelligence (AI) expertise in OpenAI ChatGPT utility: a evaluation of ChatGPT in writing English essay. J. Engl. Lang. Educate. 12, 44–58. https://doi.org/10.15294/elt.v12i1.64069 (2023).

    Article 

    Google Scholar
     

  • Alkhowaiter, W. A. Use and behavioural intention of M-Fee in GCC international locations: extending Meta-UTAUT with trust and Islamic Religiosity. J. Innov. Knowl. 7, 1–11. https://doi.org/10.1016/j.jik.2022.100240 (2022).

    Article 

    Google Scholar
     

  • Akinnuwesi, B. A. et al. A modified UTAUT mannequin for the acceptance and use of digital expertise for tackling COVID-19. Maintain. Oper. Comput. 3, 118–135. https://doi.org/10.1016/j.susoc.2021.12.001 (2022).

    Article 

    Google Scholar
     

  • Vogler, R. An AI College House Odyssey. Robon. J. Autom. Econ. 5, 1–7 (2023).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *